固体力学与飞行器总体设计

水陆两栖飞机静力试验优化机翼变形的载荷配平

  • 田文朋 ,
  • 夏峰 ,
  • 宋鹏飞 ,
  • 张柁 ,
  • 杨鹏飞
展开
  • 中国飞机强度研究所 全尺寸飞机结构静力/疲劳航空科技重点实验室, 西安 710065

收稿日期: 2020-03-10

  修回日期: 2020-04-20

  网络出版日期: 2020-12-01

基金资助

国家自然科学基金(51601175,51805041)

Load balancing for wing deformation optimization in amphibious aircraft static test

  • TIAN Wenpeng ,
  • XIA Feng ,
  • SONG Pengfei ,
  • ZHANG Tuo ,
  • YANG Pengfei
Expand
  • Aviation Technology Key Laboratory for Full-scale Aircraft Structures Static and Fatigue, Aircraft Strength Research Institute of China, Xi'an 710065

Received date: 2020-03-10

  Revised date: 2020-04-20

  Online published: 2020-12-01

Supported by

National Natural Science Foundation of China(51601175, 51805041)

摘要

水陆两栖飞机全机静力试验的浮筒着水工况试验中,在试验允许的常规载荷配平方案下,压向大量级水载荷作用于浮筒结构引起机翼较大变形,影响试验精度,因此进行以减少机翼变形为目标的载荷配平研究。将机翼近似为悬臂梁结构,在构建的机翼力学模型基础上应用Green函数建立机翼的挠度曲线方程。首次以考核区域边界肋的挠度和转角为优化目标并建立多目标函数,通过层次分析法和极差变换标准化处理方法将其转化为单目标函数后,采用引入交叉和变异因子的改进蚁群算法进行载荷配平方案优化运算。有限元分析及试验结果显示,优化得到的载荷配平方案可以显著地减少机翼变形,配平载荷不影响考核区域的真实变形,证明了该优化方案的正确性和可行性。

本文引用格式

田文朋 , 夏峰 , 宋鹏飞 , 张柁 , 杨鹏飞 . 水陆两栖飞机静力试验优化机翼变形的载荷配平[J]. 航空学报, 2020 , 41(11) : 223956 -223956 . DOI: 10.7527/S1000-6893.2020.23956

Abstract

In the normal load balancing scheme allowed by the static test of amphibious aircraft buoy landing, compressive large-scale water load acting on the buoy structure causes large wing deformation which will affect the test accuracy. Therefore, load balancing research to reduce wing deformation is conducted. The deflection curve equation of the wing which is approximated to cantilever beam structure is established using Green’s function on the basis of the mechanics model. The deflection and the rotation angle of the boundary rib of the examined area are taken as the optimization targets, and a multi-objective function is established for the first time. The function is then transformed into a single objective one via the analytic hierarchy process and the standardized processing method of range transformation. The load balancing scheme is optimized by the ant colony algorithm with crossover and mutation factors. The results of both finite element analysis and the test showed that the optimized load balancing scheme can significantly reduce the wing deformation, and the balanced load does not affect the true deformation of the examined area, thus proving the correctness and feasibility of the optimization scheme.

参考文献

[1] QIU L J, SONG W B. Efficient decoupled hydrodynamic and aerodynamic analysis of amphibious aircraft water takeoff process[J]. Journal of Aircraft, 2013, 50(5):1369-1379.
[2] CAMPBELL J C, VIBNJEVIC R. Simulating structural response to water impact[J]. International Journal of Impact Engineering, 2012,49:1-10.
[3] 中国民用航空总局.中国民用航空规章第25部运输类飞机适航标准[S]. 北京:中国民用航空局, 2011. Civil Aviation Administration of China. China civil aviation regulations part 25 airworthiness standard of transport aircraft[S]. Beijing:Civil Aviation Administration of China, 2011(in Chinese).
[4] 中国人民解放军总装备部.军用飞机结构强度规范:地面试验[S]. 北京:中国人民解放军总装备部, 2008 Chinese PLA General Armament Department. Military airplane structural strength specification:Ground tests[S]. Beijing:Chinese PLA General Armament Department, 2008(in Chinese).
[5] 覃湘桂,徐维民,刘海峰,等. 大变形条件下机翼法向载荷的随动加载技术[J]. 南京航空航天大学学报,2018, 50(5):640-664. QIN X G, XU W M, LIU H F, et al. Tracking loading technology of wing's normal force under large deformation condition[J]. Journal of Nanjing University of Aeronautics & Astronautics,2018, 50(5):640-664(in Chinese).
[6] 张彦敏,周贤宾. 飞机蒙皮拉伸成形加载轨迹设计及优化[J]. 北京航空航天大学学报,2017,33(7):826-829. ZHANG Y M, ZHOU X B. Optimization of loading trajectory for skin stretch forming process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017,33(7):826-829(in Chinese).
[7] 何德华,李东升,李小强. 飞机蒙皮包覆拉伸成形加载轨迹设计优化方法[J]. 塑性工程学报,2009, 16(6):102-106. HE D H, LI D S, LI X Q. Design and optimization of the loading trajectory in aircraft skin drape forming process[J]. Journal of Plastic Engineering,2009,16(6):102-106(in Chinese).
[8] WANG L, XIE C, YANG C. Static aeroelastic analysis of flexible aircraft with large deformations[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference.Reston:AIAA,2013.
[9] 何志全,刘杨,李泽江. 大型民用飞机缝翼全尺寸静力试验载荷设计[J].航空学报,2019,40(2):522197. HE Z Q, LIU Y, LI Z J. Load design for full scale static test of slat on large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(2):522197(in Chinese).
[10] PETR V, ALES P. Using wing model deformation for improvement of CFD results of ESWIRP project[J]. Ceas Aeronautical Journal, 2018, 9(2):361-372.
[11] EVELYN W, CHRISTOPH W, THOMAS H. Effect of wing deformation on highlift systems of transport aircraft[J]. Pamm, 2009, 9(1):129-130.
[12] ABBASOV I B, OREKHOV V V. Computational modeling of multipurpose amphibious aircraft Be-200[J]. Advances in Engineering Software, 2014, 69(3):12-17.
[13] YANG X, WANG T, LIANG J, et al. Survey on the novel hybrid aquatic-aerial ampphibious aircraft:Aquatic unmanned aerial vehicle (AquaUAV)[J]. Progress in Aerospace Sciences, 2015, 74:131-151.
[14] 郑建军,唐吉运,王彬文.C919飞机全机静力试验技术[J].航空学报,2019,40(1):522364. ZHENG J J, TANG J Y, WANG B W. Static test technology for C919 full-scale aircraft structure[J]. Acta Aeronautica et Astronautica Sinica,2019,40(1):522364(in Chinese).
[15] 刘玮, 滕青, 刘冰. 基于地板结构的机身双层双向加载技术[J]. 航空学报, 2018, 39(5):221712. LIU W, TENG Q, LIU B. Double-deck bi-directional loading technology based on airliner cabin floor structure[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):221712(in Chinese).
[16] 庞宝才,董登科,弓云昭,等.襟缝翼可动翼面的随动加载方法研究[J].机械科学与技术, 2014,33(10):1590-1593. PANG B C, DONG D K, GONG Y Z, et al. Study on tracking loading method of locomotory wing for flap and slat[J]. Mechanical Science and Technology for Aerospace Engineering,2014,33(10):1590-1593(in Chinese).
[17] 王睿,周洲,祝小平,等.几何非线性机翼本征梁元素模型的高效化改进[J].航空学报,2013,34(6):1309-1318. WANG R, ZHOU Z, ZHU X P, et al. Improving the geometrically nonlinear intrinsic beam element model of wing for high Efficiency[J]. Acta Aeronautica et Astronautica Sinica, 2013,34(6):1309-1318(in Chinese).
[18] HOZHABROSSADATI S M, CHALLAMEL N, REZAIEE-PAJAND M, et al. Application of Green's function method to bending of stress gradient nanobeams[J]. International Journal of Solids & Structures, 2018, 143:S0020768318301173
[19] 李银山. Maple材料力学[M]. 北京:机械工业出版社, 2009. LI Y S. Maple material mechanics[M]. Beijing:Mechanical Industry Press, 2009(in Chinese).
[20] 薛帮猛,张文升,孙学卫,等. 动力干扰下宽体客机机翼多目标优化设计[J]. 航空学报,2019,40(2):522381. XUE B M, ZHANG W S, SUN X W, et al. Multi-objective wing shape optimization for a wide-body civil aircraft in wingbody-pylon-powered nacelle configuration[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(2):522381(in Chinese).
[21] SAATY T L, VARGAS L G. Models, methods, concepts & applications of the analytic hierarchy process[J]. International, 2017, 7(2):159-172.
[22] 吴春明, 陈治, 姜明. 蚁群算法中系统初始化及系统参数的研究[J]. 电子学报, 2006, 34(8):1530-1533. WU C M, CHEN Z, JIANG M. The research on Initialization of ants system and configuration of parameters for different TSP problems in ant algorithm[J]. Acta Electronica Sinica, 2006, 34(8):1530-1533(in Chinese).
[23] 罗明强,冯昊成,刘虎,等.机翼结构有限元的快速建模及自动化调整[J]. 北京航空航天大学学报, 2011, 37(6):680-684. LUO M Q, FENG H C, LIU H, et al. Rapid wing structural finite element modeling and automated adjustment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(6):680-684(in Chinese).
[24] TANG J, XI P, ZHANG B, et al. A finite element parametric modeling technique of aircraft wing structures[J]. Chinese Journal of Aeronautics, 2013,26(5):1202-1210.
[25] WEN Q, GUO S, HAO L I, et al. Nonlinear dynamics of a flapping rotary wing:Modeling and optimal wing kinematic analysis[J]. Chinese Journal of Aeronautics, 2018, 31(5):1041-1052.
文章导航

/