论文

基于跟踪微分器的高超声速飞行器Backstepping控制

  • 路遥
展开
  • 1. 宇航智能控制技术国家级重点实验室, 北京 100854;
    2. 北京航天自动控制研究所, 北京 100854

收稿日期: 2020-09-09

  修回日期: 2020-10-06

  网络出版日期: 2020-11-27

基金资助

国家自然科学基金(61803357)

Backstepping control for hypersonic flight vehicles based on tracking differentiator

  • LU Yao
Expand
  • 1. National Key Laboratory of Science and Technology on Aerospace Intelligent Control, Beijing 100854, China;
    2. Beijing Aerospace Automatic Control Institute, Beijing 100854, China

Received date: 2020-09-09

  Revised date: 2020-10-06

  Online published: 2020-11-27

Supported by

National Natural Science Foundation of China (61803357)

摘要

针对存在模型参数不确定和外部干扰的高超声速飞行器(HFV)跟踪控制问题,提出一种基于Backstepping方法的抗饱和非线性控制器。将飞行器纵向动力学模型分为速度子系统和航迹倾角子系统,然后针对每个子系统单独设计控制器。设计跟踪微分器获得信号的一阶导数,用以估计系统中的不确定干扰项和避免"微分项膨胀"问题。控制器设计过程考虑了控制量发生饱和的情况。基于Lyapunov理论证明了闭环系统信号的稳定性。与传统高超声速飞行器Backstepping方法相比,所设计的控制器采用待跟踪状态与理想控制指令之间的实际误差作为反馈量,放宽了对系统干扰项的限制,提高了控制器对控制增益变化的适应性,进而提高了闭环系统的跟踪控制性能。对比仿真结果验证了所设计方法的有效性。

本文引用格式

路遥 . 基于跟踪微分器的高超声速飞行器Backstepping控制[J]. 航空学报, 2021 , 42(11) : 524737 -524737 . DOI: 10.7527/S1000-6893.2020.24737

Abstract

For the problem of tracking control of the Hypersonic Flight Vehicle (HFV) with uncertain model parameters and external disturbances, a Backstepping-based anti-saturation nonlinear controller is proposed. The longitudinal dynamical model of the vehicle is divided into the velocity subsystem and the flight path angle subsystem, and then the controller is designed individually for each subsystem. A tracking differentiator is designed to obtain the first derivative of a signal, which is used to estimate the uncertainties existing in systems and avoid the problem of "explosion of complexity". Occurrence of saturation of control inputs is considered in the design of the controller. The stability of closed-loop system signals is proved based on the Lyapunov theory. In comparison with the conventional Backstepping method applied to HFVs, the proposed method adopts the actual error between the state to be tracked and the desired control command as the feedback variable, relaxes the restriction on system disturbances and improves the adaptability of controller to variation of control gains, which enhances the tracking control performance of the closed-loop system. The comparative simulation results verify the effectiveness of the proposed method.

参考文献

[1] 陈冰, 郑勇, 陈张雷, 等. 临近空间高超声速飞行器天文导航系统综述[J]. 航空学报, 2020, 41(8):623686. CHEN B, ZHENG Y, CHEN Z L, et al. A review of celestial navigation system on near space hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):623686(in Chinese).
[2] 丛戎飞, 叶友达, 赵忠良. 吸气式高超声速飞行器俯仰/滚转耦合运动特性[J]. 航空学报, 2020, 41(4):123588. CONG R F, YE Y D, ZHAO Z L. Characteristics of air-breathing hypersonic vehicle in force-pitch and free-roll coupling motion[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):123588(in Chinese).
[3] KANELLAKOPOULOS I, KOKOTOVIC P V, MORSE A S. Systematic design of adaptive controllers for feedback linearizable systems[J]. IEEE Transactions on Automatic Control, 1991, 36(11):1241-1253.
[4] SUN J L, PU Z Q, YI J Q. Conditional disturbance negation based active disturbance rejection control for hypersonic vehicles[J]. Control Engineering Practice, 2019, 84:159-171.
[5] 李亚苹, 王芳, 周超. 全状态受限的高超声速飞行器的预定性能滤波反步控制[J]. 航空学报, 2020, 41(11):623857. LI Y P, WANG F, ZHOU C. Prescribed performance filter Backstepping control of hypersonic vehicle with full state constraints[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):623857(in Chinese).
[6] 路遥, 孙友, 路坤锋. 弹性高超声速飞行器输入饱和抑制Backstepping控制[J]. 振动与冲击, 2019, 38(20):38-43, 50. LU Y, SUN Y, LU K F. Saturation restraint of inputs Backstepping control for a flexible hypersonic vehicle[J]. Journal of Vibration and Shock, 2019, 38(20):38-43, 50(in Chinese).
[7] HE N B, GAO Q, GUTIERREZ H, et al. Robust adaptive dynamic surface control for hypersonic vehicles[J]. Nonlinear Dynamics, 2018, 93(3):1109-1120.
[8] 骆长鑫, 张东洋, 雷虎民, 等. 输入受限的高超声速飞行器鲁棒反演控制[J]. 航空学报, 2018, 39(4):321801. LUO C X, ZHANG D Y, LEI H M, et al. Robust Backstepping control of input-constrained hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):321801(in Chinese).
[9] HU Q L, MENG Y, WANG C L, et al. Adaptive Backstepping control for air-breathing hypersonic vehicles with input nonlinearities[J]. Aerospace Science and Technology, 2018, 73:289-299.
[10] 王肖, 郭杰, 唐胜景, 等. 吸气式高超声速飞行器鲁棒非奇异Terminal滑模反步控制[J]. 航空学报, 2017, 38(3):320287. WANG X, GUO J, TANG S J, et al. Robust nonsingular Terminal sliding mode Backstepping control for air-breathing hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):320287(in Chinese).
[11] WU G H, MENG X Y, WANG F Y. Improved nonlinear dynamic inversion control for a flexible air-breathing hypersonic vehicle[J]. Aerospace Science and Technology, 2018, 78:734-743.
[12] HU Q L, WANG C L, LI Y, et al. Adaptive control for hypersonic vehicles with time-varying faults[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3):1442-1455.
[13] DOU L Q, SU P H, ZONG Q, et al. Fuzzy disturbance observer-based dynamic surface control for air-breathing hypersonic vehicle with variable geometry inlets[J]. IET Control Theory & Applications, 2018, 12(1):10-19.
[14] LU Y. Disturbance observer-based Backstepping control for hypersonic flight vehicles without use of measured flight path angle[J]. Chinese Journal of Aeronautics, 2021, 34(2):396-406.
[15] 刘希, 孙秀霞, 刘树光, 等. 非线性增益递归滑模动态面自适应NN控制[J]. 自动化学报, 2014, 40(10):2193-2202. LIU X, SUN X X, LIU S G, et al. Recursive sliding-mode dynamic surface adaptive NN control with nonlinear gains[J]. Acta Automatica Sinica, 2014, 40(10):2193-2202(in Chinese).
[16] ZHANG S, WANG Q, DONG C Y. A novel adaptive dynamic surface control scheme of hypersonic flight vehicles with thrust and actuator constraints[J]. Transactions of the Institute of Measurement and Control, 2018, 40(4):1362-1374.
[17] TIAN J Y, ZHANG S F, ZHANG Y H, et al. Active disturbance rejection control based robust output feedback autopilot design for airbreathing hypersonic vehicles[J]. ISA Transactions, 2018, 74:45-59.
[18] AN H, WU Q Q, XIA H W, et al. Fast tracking control of air-breathing hypersonic vehicles with time-varying uncertain parameters[J]. Nonlinear Dynamics, 2018, 91(3):1835-1852.
[19] DONG C Y, LIU Y, WANG Q. Barrier Lyapunov function based adaptive finite-time control for hypersonic flight vehicles with state constraints[J]. ISA Transactions, 2020, 96:163-176.
[20] PARKER J T, SERRANI A, YURKOVICH S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3):856-869.
[21] 殷泽阳, 罗建军, 魏才盛, 等. 非合作航天器姿态接管无辨识预设性能控制[J]. 航空学报, 2018, 39(11):322022. YIN Z Y, LUO J J, WEI C S, et al. Estimation-free and prescribed performance control of attitude takeover for non-cooperative spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):322022(in Chinese).
[22] MAHDIAN DEHKORDI N, SADATI N, HAMZEH M. A Backstepping high-order sliding mode voltage control strategy for an islanded microgrid with harmonic/interharmonic loads[J]. Control Engineering Practice, 2017, 58:150-160.
[23] DAI J, GAO A, XIA Y Q. Mars atmospheric entry guidance for reference trajectory tracking based on robust nonlinear compound controller[J]. Acta Astronautica, 2017, 132:221-229.
[24] 韩京清, 王伟. 非线性跟踪-微分器[J]. 系统科学与数学, 1994, 14(2):177-183. HAN J Q, WANG W. Nonlinear tracking-differentiator[J]. Journal of Systems Science and Mathematical Sciences, 1994, 14(2):177-183(in Chinese).
[25] BU X W, WU X Y, CHEN Y X, et al. Design of a class of new nonlinear disturbance observers based on tracking differentiators for uncertain dynamic systems[J]. International Journal of Control, Automation and Systems, 2015, 13(3):595-602.
[26] 李殿璞. 非线性控制系统[M]. 西安:西北工业大学出版社, 2009:142. LI D P. Nonlinear control systems[M]. Xi'an:Northwestern Polytechnical University Press, 2009:142(in Chinese).
文章导航

/