材料工程与机械制造

剧烈塑性变形对钛合金热氧化的影响

  • 杨换平 ,
  • 庄唯 ,
  • 王耀勉 ,
  • 剡文斌
展开
  • 西安建筑科技大学 冶金工程学院, 西安 710055

收稿日期: 2020-08-19

  修回日期: 2020-09-18

  网络出版日期: 2020-11-27

基金资助

陕西省自然科学基础研究计划(2020JQ-676);陕西省重点研发计划(2017GY-115)

Influence of severe plastic deformation on thermal oxidation of titanium alloys

  • YANG Huanping ,
  • ZHUANG Wei ,
  • WANG Yaomian ,
  • YAN Wenbin
Expand
  • School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China

Received date: 2020-08-19

  Revised date: 2020-09-18

  Online published: 2020-11-27

Supported by

Natural Science Basic Research Program of Shaanxi Province (2020 JQ-676); Key Research and Development Program of Shaanxi Province (2017GY-115)

摘要

钛合金热氧化通过在表面形成氧化层和氧扩散层改善其综合性能。热氧化前对钛合金进行剧烈塑性变形可以引入高密度晶界、位错、孪晶界等晶体缺陷及高畸变能,能够促进氧原子吸附、降低氧化物形核温度、加速氧化膜生长并促进氧原子向基体内的扩散,形成更厚、更致密的氧化层和更深的氧扩散区,获得更好的性能。本文对剧烈塑性变形钛合金的热氧化进行综述。首先,介绍了几种常见的剧烈塑性变形方法,总结了钛合金剧烈塑性变形和热氧化复合处理的工艺情况和处理效果。然后,根据氧化物形成的一般过程阐述了剧烈塑性变形引起的微观结构变化对氧原子吸附、氧化物形核、氧化膜形成、氧化膜增厚和氧扩散区形成的影响机理。最后,总结了剧烈塑性变形对氧化膜厚度、氧扩散区范围和氧化物形貌等热氧化微观结构及硬度、摩擦磨损等力学性能的影响,指出了当前研究中存在的问题,并展望了未来的研究方向。

本文引用格式

杨换平 , 庄唯 , 王耀勉 , 剡文斌 . 剧烈塑性变形对钛合金热氧化的影响[J]. 航空学报, 2021 , 42(9) : 424656 -424656 . DOI: 10.7527/S1000-6893.2020.24656

Abstract

Thermal oxidation of titanium alloys can improve their overall properties by forming an oxide layer and an oxygen diffusion layer on the surface. Severe plastic deformation of titanium alloys before thermal oxidation can introduce crystal defects such as high density of grain boundaries, dislocations, twin boundaries and high distortion energy, which can promote the absorption of oxygen atom, reduce oxide nucleation temperature, accelerate the growth of oxide film, and promote the diffusion of oxygen atoms into the matrix. Thus, a denser and thicker oxide layer and a deeper oxygen diffusion zone can be formed to obtain better performance. In the study, thermal oxidation of severe plastic deformed titanium alloys is review. Firstly, several common methods of severe plastic deformation are introduced, and the processing conditions and treatment effects of the combined treatment of severe plastic deformation and thermal oxidation of titanium alloys are summarized. Then, according to the general process of oxide formation, the influence mechanism of microstructure changes caused by severe plastic deformation on the absorption of oxygen atom, the nucleation of oxide, the formation of oxide film, the thickening of oxide film and the formation of oxygen diffusion zone is explained. Finally, the effects of severe plastic deformation on thermal oxidation microstructure such as the thickness of oxide film, the range of oxygen diffusion zone and the oxide morphology, as well as the mechanical properties such as hardness, friction and wear, are summarized. The existing problems in the current research are presented, and the future research directions are prospected.

参考文献

[1] BUMPS E S, KESSLER H D, HANSEN M. The titanium-oxygen system[J]. Transactions of the Metallurgical Society of AIME, 1953, 45:1008-1028.
[2] WANG G F, LI J H, LV K, et al. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration[J]. Scientific Reports, 2016, 6:31769.
[3] KUMAR S, NARAYANAN T S N S, RAMAN S G S, et al. Thermal oxidation of CP Ti-An electrochemical and structural characterization[J]. Materials Characterization, 2010, 61(6):589-597.
[4] DONG H, BLOYCE A, MORTON P H, et al. Surface engineering to improve tribological performance of Ti-6Al-4V[J]. Surface Engineering, 1997, 13(5):402-406.
[5] PARK Y J, SONG H J, KIM I, et al. Surface characteristics and bioactivity of oxide film on titanium metal formed by thermal oxidation[J]. Journal of Materials Science:Materials in Medicine, 2007, 18(4):565-575.
[6] ZHANG M M, CHENG Y X, XIN L, et al. Cyclic oxidation behaviour of Ti/TiAlN composite multilayer coatings deposited on titanium alloy[J]. Corrosion Science, 2020, 166:108476.
[7] KUMAR A, KUSHWAHA M K, ISRAR M, et al. Evaluation of mechanical properties of titanium alloy after thermal oxidation process[J]. Transactions of the Indian Institute of Metals, 2020, 73(5):1373-1381.
[8] LAO X S, ZHAO X F, LIU Y, et al. Experimental study on friction characteristics of micro-arc oxidation modified layer on titanium alloy surface[C]//The 8th International Conference on Nanostructures, Nanomaterials and Nanoengineering. Stafa-Zurich:Trans Tech Publications Ltd, 2020:44-49.
[9] DONG H, LI X Y. Oxygen boost diffusion for the deep-case hardening of titanium alloys[J]. Materials Science and Engineering:A, 2000, 280(2):303-310.
[10] ZABLER S. Interstitial oxygen diffusion hardening-A practical route for the surface protection of titanium[J]. Materials Characterization, 2011, 62(12):1205-1213.
[11] 刘勇, 杨德庄, 何世禹, 等. Ti-6Al-4V合金表面的热氧化/真空扩散处理[J]. 中国有色金属学报, 2003, 13(1):177-180. LIU Y, YANG D Z, HE S Y, et al. Thermal oxidation/vacuum diffusion treatment on surface of titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(1):177-180(in Chinese).
[12] 严伟, 王小祥. 热氧化处理钛表面渗氧层的组织与性能研究[J]. 稀有金属材料与工程, 2005, 34(3):471-474. YAN W, WANG X X. Characterization of the surface oxygen-diffusion zone of the thermally oxidized titanium[J]. Rare Metal Materials and Engineering, 2005, 34(3):471-474(in Chinese).
[13] 王娅婷, 林乃明, 唐宾. 钛及钛合金热氧化工艺的研究现状[J]. 腐蚀与防护, 2014, 35(10):965-970. WANG Y T, LIN N M, TANG B. Development of thermal oxidation of titanium and titanium alloys[J]. Corrosion & Protection, 2014, 35(10):965-970(in Chinese).
[14] 秦建峰, 王馨舶, 邹娇娟, 等. 热氧化提高钛及钛合金表面性能的研究进展[J]. 表面技术, 2017, 46(1):1-8. QIN J F, WANG X B, ZOU J J, et al. Research progress of thermal oxidation effect on improving surface properties of titanium and titanium alloy[J]. Surface Technology, 2017, 46(1):1-8(in Chinese).
[15] 郑锋, 程挺宇, 张巧云, 等. 高能喷丸表面纳米化技术在纯钛中的应用效果[J]. 稀有金属与硬质合金, 2009, 37(4):61-63. ZHENG F, CHENG T Y, ZHANG Q Y, et al. Application effect of surface nanocrystallization by high-energy shot peening on pure titanium[J]. Rare Metals and Cemented Carbides, 2009, 37(4):61-63(in Chinese).
[16] LIU Y G, LI H M, LI M Q. Roles for shot dimension, air pressure and duration in the fabrication of nanocrystalline surface layer in TC17 alloy via high energy shot peening[J]. Journal of Manufacturing Processes, 2020, 56:562-570.
[17] LI C, CUI W F, ZHANG Y S. Surface self-nanocrystallization of α+β titanium alloy by surface mechanical grinding treatment[J]. Metals & Materials International, 2017, 23(3):512-518.
[18] ALTENBERGER I, STACH E A, LIU G, et al. An in situ transmission electron microscope study of the thermal stability of near-surface microstructures induced by deep rolling and laser-shock peening[J]. Scripta Materialia, 2003, 48(12):1593-1598.
[19] SUWAS S, BEAUSIR B, TÓTH L S, et al. Texture evolution in commercially pure titanium after warm equal channel angular extrusion[J]. Acta Materialia, 2011, 59(3):1121-1133.
[20] MILNER J L, ABU-FARHA F, BUNGET C, et al. Grain refinement and mechanical properties of CP-Ti processed by warm accumulative roll bonding[J]. Materials Science and Engineering:A, 2013, 561:109-117.
[21] WANG Y M, CHENG J P, YANG H P, et al. Influence of microstructure on shot peening effects of Ti-6Al-4V alloy[J]. Materials Science Forum, 2018, 921:177-183.
[22] UNAL O, CAHIT KARAOGLANLI A, VAROL R, et al. Microstructure evolution and mechanical behavior of severe shot peened commercially pure titanium[J]. Vacuum, 2014, 110:202-206.
[23] HUANG J, ZHANG K M, JIA Y F, et al. Effect of thermal annealing on the microstructure, mechanical properties and residual stress relaxation of pure titanium after deep rolling treatment[J]. Journal of Materials Science & Technology, 2019, 35(3):409-417.
[24] FAN Z G, XIE C Y. Phase transformation behaviors of Ti-50.9 at.% Ni alloy after equal channel angular extrusion[J]. Materials Letters, 2008, 62(6-7):800-803.
[25] LI J, ZHOU J Z, FENG A X, et al. Investigation on mechanical properties and microstructural evolution of TC6 titanium alloy subjected to laser peening at cryogenic temperature[J]. Materials Science and Engineering:A, 2018, 734:291-298.
[26] WANG Q, YIN Y F, SUN Q Y, et al. Gradient nano microstructure and its formation mechanism in pure titanium produced by surface rolling treatment[J]. Journal of Materials Research, 2014, 29(4):569-577.
[27] ZHU L H, GUAN Y J, LIN J, et al. A nanocrystalline-amorphous mixed layer obtained by ultrasonic shot peening on pure titanium at room temperature[J]. Ultrasonics Sonochemistry, 2018, 47:68-74.
[28] AGRAWAL R K, PANDEY V, BARHANPURKAR-NAIK A, et al. Effect of ultrasonic shot peening duration on microstructure, corrosion behavior and cell response of cp-Ti[J]. Ultrasonics, 2020, 104:106110.
[29] DAI S J, ZHU Y T, HUANG Z W. Microstructure evolution and strengthening mechanisms of pure titanium with nano-structured surface obtained by high energy shot peening[J]. Vacuum, 2016, 125:215-221.
[30] WEN M, WEN C E, HODGSON P, et al. Thermal oxidation behaviour of bulk titanium with nanocrystalline surface layer[J]. Corrosion Science, 2012, 59:352-359.
[31] ZHANG B S, WANG J Y, ZHU S S, et al. Effects of ECAP on the formation and tribological properties of thermal oxidation layers on a pure titanium surface[J]. Oxidation of Metals, 2019, 91(3-4):483-494.
[32] JIA Y F, PAN R J, ZHANG P Y, et al. Enhanced surface strengthening of titanium treated by combined surface deep-rolling and oxygen boost diffusion technique[J]. Corrosion Science, 2019, 157:256-267.
[33] KIKUCHI S, KOMOTORI J. Effect of fine particle peening on atmospheric oxidation behavior of Ti-6Al-4V alloy[J]. Journal of the Japan Institute of Metals and Materials, 2015, 80(2):114-120.
[34] LIU J, SUSLOV S, LI S X, et al. Effects of ultrasonic nanocrystal surface modification on the thermal oxidation behavior of Ti6Al4V[J]. Surface and Coatings Technology, 2017, 325:289-298.
[35] ZHANG B S, WANG J Y, ZHU S S, et al. Fabrication and tribological properties of gradient fine-grained oxygen-boosting layer on ECAP-treated pure titanium surface[J]. Surface Review and Letters, 2019, 26(6):1850199.
[36] DENG Z N, LIU J S, HE Y, et al. Synthesis and properties of hydroxyapatite-containing porous titania coating on titanium by ultrasonic shot peening and micro-arc oxidation[J]. Advanced Materials Research, 2013, 690-693:2081-2084.
[37] KANJER A, OPTASANU V, MARCO DE LUCAS M C, et al. Improving the high temperature oxidation resistance of pure titanium by shot-peening treatments[J]. Surface and Coatings Technology, 2018, 343:93-100.
[38] KANJER A, LAVISSE L, OPTASANU V, et al. Effect of laser shock peening on the high temperature oxidation resistance of titanium[J]. Surface and Coatings Technology, 2017, 326:146-155.
[39] PASTOREK F, HADZIMA B, FINTOVÁ S, et al. Influence of anodic oxidation on the polarization resistance of Ti6Al4V alloy after shot peening[J]. Materials Science Forum, 2014, 811:59-62.
[40] WEN M, WEN C E, HODGSON P, et al. Improvement of the biomedical properties of titanium using SMAT and thermal oxidation[J]. Colloids and Surfaces B:Biointerfaces, 2014, 116:658-665.
[41] MADHAVI Y, RAMA KRISHNA L, NARASAIAH N. Influence of micro arc oxidation coating thickness and prior shot peening on the fatigue behavior of 6061-T6 Al alloy[J]. International Journal of Fatigue, 2019, 126:297-305.
[42] 炊鹏飞, 贺志荣, 张锋刚, 等. 纯钛表面纳米化预处理对氧化膜结构的影响[J]. 金属热处理, 2017, 42(10):145-148. CHUI P F, HE Z R, ZHANG F G, et al. Effect of surface nanocrystallization pretreatment on microstructure of pure titanium oxidation film[J]. Heat Treatment of Metals, 2017, 42(10):145-148(in Chinese).
[43] THOMAS M, LINDLEY T, RUGG D, et al. The effect of shot peening on the microstructure and properties of a near-alpha titanium alloy following high temperature exposure[J]. Acta Materialia, 2012, 60(13-14):5040-5048.
[44] BAILEY R, SUN Y. Unlubricated sliding friction and wear characteristics of thermally oxidized commercially pure titanium[J]. Wear, 2013, 308(1-2):61-70.
[45] ANIOŁEK K. Structure and properties of titanium and the Ti-6Al-7Nb alloy after isothermal oxidation[J]. Surface Engineering, 2020, 36(8):847-858.
[46] ZHU L H, GUAN Y J, LIN J, et al. The enhanced thermal stability of the nanocrystalline-amorphous composite layer on pure titanium induced by ultrasonic shot peening[J]. Journal of Alloys and Compounds, 2019, 791:1063-1069.
[47] KANJER A, OPTASANU V, LAVISSE L, et al. Influence of mechanical surface treatment on high-temperature oxidation of pure titanium[J]. Oxidation of Metals, 2017, 88(3-4):383-395.
[48] HARADA Y, SAEKI Y, HATTORI K. Fatigue improvement of titanium alloy by compound peening using microshot and ultrasonic vibration[J]. The Proceedings of Conference of Kansai Branch, 2017, 92:503.
[49] ZHENG H Z, GUO S H, LUO Q H, et al. Effect of shot peening on microstructure, nanocrystallization and microhardness of Ti-10V-2Fe-3Al alloy surface[J]. Journal of Iron and Steel Research International, 2019, 26(1):52-58.
[50] GIL F J, Aparicio C, Planell, J A. Effect of oxygen content on grain growth kinetics of titanium[J]. Journal of Materials Synthesis and Processing, 2002, 10(5):263-266.
[51] CHEN Y X, WANG J C, GAO Y K, et al. Effect of shot peening on fatigue performance of Ti2AlNb intermetallic alloy[J]. International Journal of Fatigue, 2019, 127:53-57.
[52] THOMAS M, JACKSON M. The role of temperature and alloy chemistry on subsurface deformation mechanisms during shot peening of titanium alloys[J]. Scripta Materialia, 2012, 66(12):1065-1068.
[53] ZHANG Y, MA G R, ZHANG X C, et al. Thermal oxidation of Ti-6Al-4V alloy and pure titanium under external bending strain:Experiment and modelling[J]. Corrosion Science, 2017, 122:61-73.
[54] XU L, DING J N, HUANG Z, et al. The effect of current density to surface morphology and component of micro-arc oxidization ceramic coating of pure titanium[J]. Materials Science Forum, 2016, 852:992-999.
[55] JIN F Y, CHU P K, WANG K, et al. Thermal stability of titania films prepared on titanium by micro-arc oxidation[J]. Materials Science and Engineering:A, 2008, 476(1-2):78-82.
[56] AMANOV A, PYUN Y S. Local heat treatment with and without ultrasonic nanocrystal surface modification of Ti-6Al-4V alloy:Mechanical and tribological properties[J]. Surface and Coatings Technology, 2017, 326:343-354.
[57] KUMAR S, CHATTOPADHYAY K, SINGH V. Optimization of the duration of ultrasonic shot peening for enhancement of fatigue life of the alloy Ti-6Al-4V[J]. Journal of Materials Engineering and Performance, 2020, 29(2):1214-1224.
[58] GARCÍA-ALONSO M C, SALDAÑA L, VALLÉS G, et al. In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy[J]. Biomaterials, 2003, 24(1):19-26.
[59] KUMAR S, NARAYANAN T S N S, RAMAN S G S, et al. Thermal oxidation of CP Ti-An electrochemical and structural characterization[J]. Materials Characterization, 2010, 61(6):589-597.
文章导航

/