对某飞机座舱盖侧型材与锁环连接部位的疲劳裂纹扩展性能进行了研究。该结构区别于常见薄壁结构的特征是承受较大的弯曲载荷,使得利用薄板I型裂纹扩展的常用方法进行寿命分析会产生较大的误差。为了研究弯曲载荷下薄壁结构的疲劳裂纹扩展性能,开展了带孔板和侧型材结构模拟件的疲劳裂纹扩展试验。通过有限元仿真分析,研究了弯曲载荷对裂尖应力强度因子的影响,提出了一种当量应力强度因子变程公式;对本文所涉及的2种类型受弯曲载荷作用的试件,裂纹扩展寿命预测结果与试验吻合较好。研究表明,在相同的名义应力和裂纹长度下,薄板受弯时裂纹应力强度因子、裂纹扩展速率远低于受拉的情况;结构受到弯曲载荷时,锁环对连接部位的应力有显著的抑制作用,可以减缓疲劳裂纹的扩展;此外,合理的结构设计能够增加关键部位受弯时的疲劳裂纹扩展寿命。
The fatigue crack growth performance at the joint sites between the lockring and the side profile of the canopy in a certain aircraft is studied. The main difference of such structure from other common thin-walled structures lies in its large bending load, resulting in large errors in fatigue life analysis conducted with the common method for thin-walled mode I crack growth. To study the fatigue crack growth performance of thin-walled structures under the bending load, we first conducted fatigue crack growth tests of hole plates and side profile structural simulator specimens. Effects of the bending load on the Stress Intensity Factor (SIF) were then studied by finite element simulations, and a modified formula with the equivalent SIF range was further proposed. The predicted results of the crack growth life in the two types of specimens under bending involved in this paper agree well with the test results. It is shown that SIF and thus fatigue crack growth rates are much lower than those under tension with the same nominal stress and crack length; when the structure is subjected to the bending load, the lockring has a significant inhibiting effect on the stress at the joint sites, thus reducing corresponding fatigue crack growth rates; moreover, reasonable structure design can enhance the fatigue crack growth life of critical parts under bending.
[1] 刘汉海, 隋福成, 解放, 等. 大修后飞机座舱盖骨架监控使用方法[C]//2019航空装备服务保障与维修技术论坛暨中国航空工业技术装备工程协会年会论文集, 2019:76-78. LIU H H, SUI F C, XIE F, et al. Monitoring usage method of aircraft cockpit cover framework after overhaul[C]//Proceedings of 2019 Aviation Equipment Service Support and Maintenance Technology Forum and China Aviation Industries Technology Equipment Engineering Association Annual Conference, 2019:76-78(in Chinese).
[2] HARTRANFT R J, SIH G C. Effect of plate thickness on the bending stress distribution around through cracks[J]. Journal of Mathematics and Physics, 1968, 47(1-4):276-291.
[3] MULLINIX B R, SMITH C W. Distribution of local stresses across the thickness of cracked plates under bending fields[J]. International Journal of Fracture, 1974, 10(3):337-352.
[4] ERDOGAN F, TUNCEL O, PARIS P C. An experi-mental investigation of the crack tip stress intensity factors in plates under cylindrical bending[J]. Journal of Fluids Engineering, 1962, 84(4):542-546.
[5] WYNN R H, SMITH C W. An Experimental investiga-tion of fracture criteria for combined extension and bend-ing[J]. Journal of Fluids Engineering, 1969, 91(4):841-849.
[6] ALWAR R S, NAMBISSAN K N R. Influence of crack closure on the stress intensity factor for plates subjected to bending-A 3-D finite element analysis[J]. Engineering Fracture Mechanics, 1983, 17(4):323-333.
[7] KEER L M, SVE C. On the bending of cracked plates[J]. International Journal of Solids and Structures, 1970, 6(12):1545-1559.
[8] CORN D L. A study of cracking techniques for obtaining partial thickness cracks of preselected depths and shapes[J]. Engineering Fracture Mechanics, 1971, 3(1):45-52.
[9] NEWMAN J C, RAJU I S. Analyses of surface crack in finite plates under tension or bending loads:NASA TP-1578[R]. Washington, D.C.:NASA, 1979.
[10] 汪周琦. 板、轴类构件中表面裂纹弯曲疲劳扩展规律[J]. 西南石油学院学报, 1983(1):56-70. WANG Z Q. Bending fatigue propagation laws of sur-face cracks in sheet and shaft element[J]. Journal of Southwestern Petroleum Institute, 1983(1):56-70(in Chinese).
[11] 赵廷仕, 王元汉, 余荣镇. 断裂力学在直升机桨毂上的应用[J]. 航空学报, 1984, 5(1):30-36. ZHAO T S, WANG Y H, YU R Z. Application of frac-ture mechanics to hub-arms of helicopter[J]. Acta Aero-nautica et Astronautica Sinica, 1984, 5(1):30-36(in Chi-nese).
[12] 巩建鸣,沈士明,戴树和.弯曲载荷作用下孔边角裂纹的应力强度因子与疲劳扩展规律[J]. 南京工业大学学报, 1990, 12(3):51-57. GONG J M, SHEN S M, DAI S H. The stress intensity factor and fatigue propagation law for corner crack at an open hole in a plate under the bending load[J]. Journal of Nanjing Institute of Chemical Technology, 1990, 12(3):51-57(in Chinese).
[13] BOOTHMAN D P, LEE M M K, LUXMOORE A R, et al. J estimation for shallow semi-elliptical surface cracks in wide plates under pure bending[J]. Fatigue & Fracture of Engineering Materials & Structures, 2001, 22(5):399-408.
[14] NESTERENKO B, NESTERENKO G I, BASOV V N. Fracture behaviour of skin materials of civil airplane structures[C]//Proceedings of the 25th Symposium of the International Committee on Aeronautical Fatigue, 2009:661-683.
[15] NAM K W, ANDO K, OGURA N, et al. Fatigue life and penetration behaviour of a surfacecracked plate under combined tension and bending[J]. Fatigue & Fracture of Engineering Materials & Structures, 1994, 17(8):873-882.
[16] FAWAZ S A. Stress intensity factor solutions for part-elliptical through cracks[J]. Engineering Fracture Mechan-ics, 1999, 63(2):209-226.
[17] PHILLIPS E P. An experimental study of fatigue crack growth in aluminum sheet subjected to combined bending and membrane stresses:NASA TM 4784[R]. Washington, D.C.:NASA, 1997.
[18] LANCIOTTI A, POLESE C. Fatigue crack propagation of through cracks in thin sheets under combined traction and bending stresses[J]. Fatigue & Fracture of Engineer-ing Materials & Structures, 2010, 26(5):421-428.
[19] 鞠晓臣,赵欣欣,刘晓光.面外变形下钢桥的疲劳贯通裂纹扩展行为研究[J]. 桥梁建设, 2015, 45(5):77-82. JU X C, ZHAO X X, LIU X G. Study of propagation behavior of through-thickness fatigue cracks of steel bridge under out-of-plane deformation[J]. Bridge Con-struction, 2015, 45(5):77-82(in Chinese).
[20] 钢铁研究总院. 金属材料疲劳试验疲劳裂纹扩展方法:GBT 6398-2017[S]. 北京:国家标准化管理委员会, 2017. China Iron & Steel Research Institute Group. Metallic materials-fatigue testing-fatigue crack growth method:GBT 6398-2017[S]. Beijing:Standardization Admin-istration, 2017(in Chinese).
[21] 高镇同. 疲劳应用统计学[M]. 北京:国防工业出版社, 1986. GAO Z T. Fatigue applied statistics[M]. Beijing:Na-tional Defense Industry Press, 1986(in Chinese).