论文

基于压缩感知的叶端定时信号参数辨识方法

  • 许敬晖 ,
  • 乔百杰 ,
  • 滕光蓉 ,
  • 杨志勃 ,
  • 陈雪峰
展开
  • 1. 西安交通大学 机械工程学院, 西安 710049;
    2. 西安交通大学 机械制造系统工程国家重点实验室, 西安 710049;
    3. 中国航空发动机有限公司 四川燃气涡轮研究院, 成都 610500

收稿日期: 2020-05-15

  修回日期: 2020-10-28

  网络出版日期: 2020-11-27

基金资助

国家自然科学基金(52075414,51705397);国家科技重大专项(2017-V-0009);国家重点研发计划(2020YFB2010800)

Parameter identification of blade tip timing signal using compressed sensing

  • XU Jinghui ,
  • QIAO Baijie ,
  • TENG Guangrong ,
  • YANG Zhibo ,
  • CHEN Xuefeng
Expand
  • 1. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
    2. The State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
    3. Sichuan Gas Turbine Establishment, Aero Engine Corporation of China, Chengdu 610500, China

Received date: 2020-05-15

  Revised date: 2020-10-28

  Online published: 2020-11-27

Supported by

National Natural Science Foundation of China (52075414, 51705397); National Science and Technology Major Project(2017-V-0009); National Key Research and Development Project (2020YFB2010800)

摘要

叶端定时技术作为一种非接触式测量手段,在实际应用中的主要问题之一是测量信号欠采样。压缩感知方法是解决信号欠采样问题的有效手段,但由于求解过程中引入了正则化项,在提高稀疏度时,降低了幅值重构精度,而转子叶片振动幅值参数的准确辨识对于叶片动应力重构具有重要意义。将叶片振动方程设计矩阵与压缩感知字典相结合,在不依赖先验信息的条件下对叶片振动参数进行辨识。首先,根据振动方程设计矩阵形式及关注的最大振动频率,构造压缩感知字典;其次,通过叶端定时信号稀疏表示中的非零元素所在位置,从压缩感知字典中提取对应原子构成设计矩阵进而求得振动参数;接着,叶端定时(BTT)模拟仿真结果表明,所提方法可有效辨识叶片单模态、多模态振动参数;最后,开展旋转叶片振动测试试验,同时利用应变片和叶端定时系统采集振动信号,结果表明,与应变片测量结果相比,提出的方法振动频率辨识相对误差仅为0.14%;对比4个叶片的位移-应变传递比,其中偏离均值的最大百分比仅为2.15%。

本文引用格式

许敬晖 , 乔百杰 , 滕光蓉 , 杨志勃 , 陈雪峰 . 基于压缩感知的叶端定时信号参数辨识方法[J]. 航空学报, 2021 , 42(5) : 524229 -524229 . DOI: 10.7527/S1000-6893.2020.24229

Abstract

Despite the wide application of the blade tip timing as a non-contact measurement technique, its acquired displacement signal is undersampled in many situations. Compressed sensing is an effective means to reconstruct the undersampled signal. However, the reconstruction process introduces the regularization penalty to achieve sparsity, reducing the amplitude accuracy of the reconstructed signal at the same time, and affecting the accurate identification of blade vibration amplitude, which is highly significant in reconstructing the dynamic stress of the blade. This paper combines the design matrix of the blade vibration equation and the compressed sensing dictionary to identify parameters of the blade vibration equation without prior information. First, a compressed sensing dictionary is constructed according to the form of design matrix elements and the maximum vibration frequency of interests. Second, atoms are extracted from the dictionary according to the indices of non-zero elements in the sparse representation of the blade tip timing signal, and parameters of the vibration equation are calculated. Third, Blade Tip Timing (BTT) simulation results demonstrate that the proposed method can accurately identify parameters of the vibration equation with both single-mode and multi-mode vibrations. Finally, experimental results of rotor blades show that the relative error of the identified natural frequency between using strain gage and using blade tip timing with compressed sensing is only 0.14%; the transmissibility of blade tip displacement to certain points strain of the four blades is compared and the maximum percentage of deviation from the mean is only 2.15%.

参考文献

[1] 李克安,林左鸣,杨胜群,等. 航空发动机转子叶片振动方程及其频率计算[J]. 航空学报, 2013, 34(12):2733-2739. LI K A, LIN Z M, YANG S Q, et al. Vibration equation and frequency computation of an aero-engine rotor blade[J]. 2013, 34(12):2733-2739(in Chinese).
[2] ZHAO F, JING X, YANG M, et al. Experimental study of rotor blades vibration and noise in multistage high pressure compressor and their relevance[J]. Chinese Journal of Aeronautics, 2020, 33(3):870-878.
[3] KNAPPETT D, GARCIA J. Blade tip timing and strain gauge correlation on compressor blades[J]. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2008, 222(G4):497-506.
[4] 刘美茹,朱靖,梁恩波,等. 基于叶尖定时的航空发动机压气机叶片振动测量[J]. 航空动力学报, 2019,34(9):1895-1904. LIU M R, ZHU J, LIANG E B, et al. Vibration measurement on compressor rotor blades of aero-engine based on tip-timing[J]. Journal of Aerospace Power, 2019,34(9):1895-1904(in Chinese).
[5] WANG W, ZHANG X, HU D, et al. A novel none once per revolution blade tip timing based blade vibration parameters identification method[J]. Chinese Journal of Aeronautics, 2020, 33(7):1953-1968.
[6] 段发阶,李刚,叶德超,等. 基于叶尖定时的叶片动应力反演方法[J]. 纳米技术与精密工程, 2016, 14(3):7-12. DUAN F J, LI G, YE D C, et al. Method for inversing dynamic stress of blade based on tip-timing[J]. Nanotechnology and Precision Engineering, 2016, 14(3):7-12(in Chinese).
[7] HU Z, LIN J, CHEN Z, et al. A non-uniformly under-sampled blade tip-timing signal reconstruction method for blade vibration monitoring[J]. Sensors, 2015, 15(2):2419-2437.
[8] HEATH S, IMREGUN M. An improved single-parameter tip-timing method for turbomachinery blade vibration measurements using optical laser probes[J]. International Journal of Mechanical Sciences, 1996, 38(10):1047-1058.
[9] 欧阳涛,段发阶,闫明,等. 双参数法辨识叶片同步振动的研究[J]. 传感器与微系统, 2010, 29(3):42-45. OU Y T, DUAN F J, YAN M, et al. Research on identifying synchronous blade vibration using two-parameter-plot method[J]. Transducer and Microsystem Technologies, 2010, 29(3):42-45(in Chinese).
[10] 王维民,任三群,陈立芳,等. 涡轮机叶片同步振动参数辨识方法研究(建模仿真)[J]. 振动与冲击, 2017, 36(17):120-126. WANG W M, REN S Q, CHEN L F, et al. Synchronous vibration parametric identification method for blades of a turbine[J]. Journal of Vibration and Shock, 2017, 36(17):120-126(in Chinese).
[11] 王维民,任三群,陈立芳,等. 涡轮机叶片同步振动参数辨识方法研究(实验研究)[J]. 振动与冲击, 2017, 36(17):127-133. WANG W M, REN S Q, CHEN L F, et al. Tests for synchronous vibration parametric identification method of a turbine's blades[J]. Journal of Vibration and Shock, 2017, 36(17):127-133(in Chinese).
[12] Di MAIO D, EWINS D J. Experimental measurements of out-of-plane vibrations of a simple blisk design using blade tip timing and scanning LDV measurement methods[J]. Mechanical Systems and Signal Processing, 2012, 28(SI):517-527.
[13] JOUNG K, KANG S, PAENG K, et al. Analysis of vibration of the turbine blades using non-intrusive stress measurement system[C]//ASME 2006 Power Conference, 2006, 42053:391-397.
[14] CHEN S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit[J]. Siam Review, 2001, 43(1):129-159.
[15] PAN M, YANG Y, GUAN F, et al. Sparse representation based frequency detection and uncertainty reduction in blade tip timing measurement for multi-mode blade vibration monitoring[J]. Sensors, 2017, 17(8):1745.
[16] 吴淑明,胡海峰,赵志斌,等. 增强稀疏分解及其在叶片振动参数识别中的应用[J]. 机械工程学报, 2019, 55(19):19-27. WU S M, HU H F, ZHAO Z B, et al. Enhancing sparse decomposition based blade vibration parameter identification[J]. Journal of Mechanical Engineering, 2019, 55(19):19-27(in Chinese).
[17] WU S, RUSSHARD P, YAN R, et al. An adaptive online blade health monitoring method:from raw data to parameters identification[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(5):2581-2592.
[18] DIAMOND D H, HEYNS P S. A novel method for the design of proximity sensor configuration for rotor blade tip timing[J]. Journal of Vibration and Acoustics-Transactions of the Asme, 2018, 140(6):061003.
[19] QIAO B, ZHANG X, WANG C, et al. Sparse regularization for force identification using dictionaries[J]. Journal of Sound and Vibration, 2016, 368:71-86.
[20] BOYD, VANDENBERGHE, FAYBUSOVICH. Convex optimization[M]. Cambridge:Cambridge University Press, 2004:291-345.
[21] CANDES E J, TAO T. Decoding by linear programming[J]. IEEE Transactions On Information Theory, 2005, 51(12):4203-4215.
[22] QIAO B, ZHANG X, GAO J, et al. Sparse deconvolution for the large-scale ill-posed inverse problem of impact force reconstruction[J]. Mechanical Systems and Signal Processing, 2017, 83:93-115.
[23] 敖春燕,乔百杰,刘美茹,等. 基于非接触式测量的旋转叶片动应变重构方法[J]. 航空动力学报, 2020(3):569-580. AO C Y, QIAO B J, LIU M R, et al. Dynamic strain reconstructing method of rotating blades based on no-contact measurement[J]. Journal of Aerospace Power, 2020(3):569-580(in Chinese).
文章导航

/