流体力学与飞行力学

基于离散伴随的流场反演在湍流模拟中的应用

  • 闫重阳 ,
  • 张宇飞 ,
  • 陈海昕
展开
  • 清华大学 航天航空学院, 北京 100086

收稿日期: 2020-09-01

  修回日期: 2020-10-11

  网络出版日期: 2020-11-20

基金资助

国家自然科学基金(91852108,11872230)

Application of field inversion based on discrete adjoint method in turbulence modeling

  • YAN Chongyang ,
  • ZHANG Yufei ,
  • CHEN Haixin
Expand
  • School of Aerospace Engineering, Tsinghua University, Beijing 100086, China

Received date: 2020-09-01

  Revised date: 2020-10-11

  Online published: 2020-11-20

Supported by

National Natural Science Foundation of China (91852108, 11872230)

摘要

精确模拟湍流流动是学术界和工业界均普遍关注的问题。采用数据驱动湍流建模的思路,建立了基于离散伴随方法的流场反演框架。通过为SA模型涡黏性输运方程的生成项乘以非均匀分布的系数,并利用有限的观测数据对该系数进行推断,实现对SA模型的修正。为了提高带有物理约束的离散伴随优化的效率,发展了约束增广的伴随方法,其高效性在本文得到了验证。选取了结冰翼型和周期山2个分离算例进行分析,所得结果在2个算例中均能以很高的精度拟合观测数据,并能借助湍流模型的修正将有限的观测信息泛化到整个流场。分析表明,流场反演所推断出的修正区域具有较为明确的物理意义,能够指导湍流模型的进一步改进。

本文引用格式

闫重阳 , 张宇飞 , 陈海昕 . 基于离散伴随的流场反演在湍流模拟中的应用[J]. 航空学报, 2021 , 42(4) : 524695 -524695 . DOI: 10.7527/S1000-6893.2020.24695

Abstract

Accurate simulation of turbulent flow is a common problem in engineering and academic fields. In this paper, the idea of data-driven turbulence modeling is adopted, and a framework of flow field inversion based on discrete adjoint is established. The SA model is modified by multiplying the production term of its eddy viscosity transport equation and a coefficient with non-uniform distribution, which is inferred with limited observation data. To improve the efficiency of discrete adjoint optimization under physical constraints, the constraint-augmented adjoint method is used, and its efficiency is verified in this paper. Two cases of iced airfoil and periodic hill are selected for analysis. The results obtained in both cases are highly consistent with the observed data, and the limited observation information can be generalized to the whole flow field with the help of the correction of the turbulence model. The analysis shows that the correction region deduced from field inversion has a certain physical significance and can guide further development of the turbulence model.

参考文献

[1] XIAO H, CINNELLA P. Quantification of model uncertainty in RANS simulations:A review[J]. Progress in Aerospace Sciences, 2019, 108:1-31.
[2] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51:357-377.
[3] PLATTEEUW P D A, LOEVEN G J A, BIJL H. Uncertainty quantification applied to the k-epsilon model of turbulence using the probabilistic collocation method:AIAA-2008-2150[R]. Reston:AIAA, 2008.
[4] DUNN M C, SHOTORBAN B, FRENDI A. Uncertainty quantification of turbulence model coefficients via Latin hypercube sampling method[J]. Journal of Fluids Engineering, 2011, 133(4):041402.
[5] EMORY M, LARSSON J, IACCARINO G. Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures[J]. Physics of Fluids, 2013, 25(11):110822.
[6] CHEUNG S H, OLIVER T A, PRUDENCIO E E, et al. Bayesian uncertainty analysis with applications to turbulence modeling[J]. Reliability Engineering and System Safety, 2011, 96(9):1137-1149.
[7] RAY J, LEFANTZI S, ARUNAJATESAN S, et al. Learning an eddy viscosity model using Shrinkage and Bayesian calibration:A jet-in-crossflow case study[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B:Mechanical Engineering, 2018, 4(1):011001.
[8] KATO H, OBAYASHI S. Approach for uncertainty of turbulence modeling based on data assimilation technique[J]. Computers & Fluids, 2013, 85:2-7.
[9] XIAO H, WU J L, WANG J X, et al. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes simulations:A data-driven, physics-informed Bayesian approach[J]. Journal of Computational Physics, 2016, 324:115-136.
[10] DOW E, WANG Q. Quantification of structural uncertainties in the k-ω turbulence model:AIAA-2011-1762[R]. Reston:AIAA, 2011.
[11] SINGH A P, DURAISAMY K. Using field inversion to quantify functional errors in turbulence closures[J]. Physics of Fluids, 2016, 28(4):045110.
[12] 张亦知, 程诚, 范钇彤, 等. 基于物理知识约束的数据驱动式湍流模型修正及槽道湍流计算验证[J]. 航空学报, 2020, 41(3):123282. ZHANG Y Z, CHENG C, FAN Y T, et al. Data-driven correction of turbulence model with physics-informed constrains in channel flow[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):123282(in Chinese).
[13] TRACEY B D, DURAISAMY K, ALONSO J J. A machine learning strategy to assist turbulence model development:AIAA-2015-1287[R]. Reston:AIAA, 2015.
[14] ZHU L Y, ZHANG W W, KOU J Q, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fulids, 2019, 31(1):015105.
[15] PARISH E J, DURAISAMY K. A paradigm for data-driven predictive modeling using field inversion and machine learning[J]. Journal of Computational Physics, 2015, 305:758-774.
[16] SINGH A P, MEDIDA S, DURAISAMY K. Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils[J]. AIAA Journal, 2017, 55(7):2215-2227.
[17] DURAISAMY K, ZHANG Z J, SINGH A P. New approaches in turbulence and transition modeling using data-driven techniques:AIAA-2015-1284[R]. Reston:AIAA, 2015.
[18] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston:AIAA, 1992.
[19] OLIVER T A, MOSER R D. Bayesian uncertainty quantification applied to RANS turbulence models[J]. Journal of Physics Conference, 2011, 318(4):042032.
[20] PIRONNEAU O. On optimum design in fluid mechanics[J]. Journal of Fluid Mechanics, 1974, 64(1):97-110.
[21] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3):377-401.
[22] GILES M B, DUTA M C, MULLER J,et al. Algorithm developments for discrete adjoint methods[J]. AIAA Journal, 2003, 41(2):198-205.
[23] 刘峰博, 郝海兵, 李典, 等. 离散伴随方法在气动优化设计中的应用[J]. 航空计算技术, 2017, 47(2):33-36, 40. LIU F B,HAO H B,LI D,et al. Application of discrete adjoint method in aerodynamic shape optimization design[J]. Aeronautical Computing Technique, 2017, 47(2):33-36, 40(in Chinese).
[24] ELLIOTT J, PERAIRE J. Practical three-dimensional aerodynamic design and optimization using unstructured meshes[J]. AIAA Journal, 1997, 35(9):1479-1485.
[25] NIELSEN E, ANDERSON W. Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations[J]. AIAA Journal, 1999, 37(11):957-964.
[26] KENWAY G K W, MADER C A, HE P, et al. Effective adjoint approaches for computational fluid dynamics[J]. Progress in Aerospace Sciences, 2019, 110:100542.
[27] RASHAD R, ZINGG D W. Aerodynamic shape optimization for natural laminar flow using a discrete-adjoint approach[J]. AIAA Journal, 2016, 54(11):3321-3337.
[28] BROEREN A P, BRAGG M B, ADDY H E. Flowfield measurements about an airfoil with leading-edge ice shapes[J]. Journal of Aircraft, 2006, 43(4):1226-1234.
[29] LI H R, ZHANG Y F, CHEN H X. Aerodynamic prediction of iced airfoils based on a modified three-equation turbulence model[J]. AIAA Journal, 2020, 58(5):3863-3876.
文章导航

/