论文

飞机铆接构件PRFECT探头的线圈夹角影响

  • 宋凯 ,
  • 方志泓 ,
  • 崔西明 ,
  • 张丽攀 ,
  • 霍俊宏
展开
  • 南昌航空大学 无损检测技术教育部重点实验室, 南昌 330063

收稿日期: 2020-08-17

  修回日期: 2020-09-10

  网络出版日期: 2020-11-20

基金资助

国家自然科学基金(51865033);无损检测技术教育部重点实验室基金(EW201908438)

Influence of coil angles of PRFECT probe of aircraft riveting component

  • SONG Kai ,
  • FANG Zhihong ,
  • CUI Ximing ,
  • ZHANG Lipan ,
  • HUO Junhong
Expand
  • Key Laboratory of Nondestructive Testing of Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China

Received date: 2020-08-17

  Revised date: 2020-09-10

  Online published: 2020-11-20

Supported by

National Natural Science Foundation of China (51865033);Foundation for Key Laboratory of Nondestructive Testing of Ministry Education of China (EW201908438)

摘要

远场涡流检测技术不受集肤效应影响,对金属铆接构件隐藏缺陷检测具有巨大优势。针对飞机金属铆接构件的远场涡流检测,建立了铆接构件隐藏缺陷检测三维模型,分析不同屏蔽阻尼材料及组合方式的屏蔽性能,采用激励线圈与检测线圈均环绕铆钉旋转的检测方法,对比激励线圈-铆钉-检测线圈夹角为90°、135°和180°时缺陷检测灵敏度,研究不同缺陷尺寸检测信号特征。仿真与试验结果表明:当屏蔽阻尼为铝+铜时具有最佳屏蔽性能,且远场区距离激励线圈中心最近;当激励线圈和检测线圈间距为30 mm时,激励线圈-铆钉-检测线圈夹角为180°时检测效果最佳;优化后的探头可检测埋深为6 mm、长×宽×深尺寸为5 mm×0.2 mm×1 mm的铆接构件隐藏缺陷,缺陷信号幅值与其体积当量关系相对应,且随缺陷长度及深度的增加呈上升趋势。

本文引用格式

宋凯 , 方志泓 , 崔西明 , 张丽攀 , 霍俊宏 . 飞机铆接构件PRFECT探头的线圈夹角影响[J]. 航空学报, 2021 , 42(10) : 524647 -524647 . DOI: 10.7527/S1000-6893.2020.24647

Abstract

The plate remote field eddy current testing technology is not affected by the skin effect, and has great advantages in detecting hidden defects in metal riveting components. For the remote field eddy current testing of metal riveting components of aircraft, a three-dimensional model for detecting hidden defects of riveting components is established, and the shielding performance of different shielding damping materials and combinations of the materials are analyzed. By adopting the detection method that both the excitation coil and the detection coil rotate around the rivet, the defect detection sensitivities when the angle of the excitation coil-rivet-detection coil is 90°, 135° and 180° is compared, and the detection signal characteristics of different defect sizes are studied. The simulation and test results show that it has the best shielding performance when the shielding damping is composed of aluminum and copper, and the remote field area is the closest to the center of the excitation coil. When the distance between the excitation coil and detection coil is 30 mm, the best detection effect is obtained when the angle of excitation coil-rivet-detection coil is 180°. The optimized probe can detect the hidden defects of riveting components with the buried depth of 6 mm and the size of length×width×depth of 5 mm×0.2 mm×1 mm. The amplitude of defect signal corresponds to its volume equivalent relation, and increases with the increase of defect length and depth.

参考文献

[1] 崔明慧. 波音737飞机紧固件的应用研究[J]. 航空制造技术, 2013, 433(13):96-99. CUI M H. Fastener application in Boeing737 aircraft[J]. Aeronautical Manufacturing Technology, 2013, 433(13):96-99(in Chinese).
[2] 丁力平. 一种航空铆钉自动检测系统研制[J]. 航空制造技术, 2017, 60(21):50-55. DING L P. Development of an automatic detection system for aeronautic rivets[J]. Aeronautical Manufacturing Technology, 2017, 60(21):50-55(in Chinese).
[3] 汪存显, 高豪迈, 龚煦, 等. 航空铆钉连接件的抗冲击性能[J]. 航空学报, 2019, 40(1):522484. WANG C X, GAO H M, GONG X, et al. Impact responses of aeronautic riveting structures[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522484(in Chinese).
[4] RAKOW A, CHANG F K. A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints[J]. Structural Health Monitoring, 2012, 11(3):253-267.
[5] 陈亚军, 刘辰辰, 王付胜. 预腐蚀和交替腐蚀作用下航空铝合金多轴疲劳行为及寿命预测[J]. 航空学报, 2019, 40(4):222465. CHEN Y J, LIU C C, WANG F S. Multiaxial fatigue behavior and life prediction of aerospace aluminum alloy under pre-corrosion and alternate corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):222465(in Chinese).
[6] 李政鸿, 徐武, 张晓晶, 等. 多孔多裂纹平板的疲劳裂纹扩展试验与分析方法[J]. 航空学报, 2018, 39(7):221867. LI Z H, XU W, ZHANG X J, et al. Experimental and analytical analyses of fatigue crack growth in sheets with multiple holes and cracks[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):221867(in Chinese).
[7] 支文琪. 紧固组合件超声成像与检测技术的研究[D]. 杭州:浙江大学, 2014:24-46. ZHI W Q. Research on ultrasonic imaging and testing technologies for fasteners[D]. Hangzhou:Zhejiang University, 2014:24-46(in Chinese).
[8] 周正干, 孙广开, 陈秀成, 等. 复合材料紧固孔分层激光超声量化表征试验[J]. 航空学报, 2014, 35(8):2348-2354. ZHOU Z G, SUN G K, CHEN X C, et al. Quantitative characterization test of fastening hole delamination in composites with laser ultrasonics[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2348-2354(in Chinese).
[9] 田云飞, 曹宗杰. 红外检测在老龄飞机蒙皮搭接结构腐蚀检测中的应用分析[J]. 飞机设计, 2013, 33(3):31-35. TIAN Y F, CAO Z J. The Analysis of aging aircraft skin lap joint structure based on infrared NDI[J]. Aircraft Design, 2013, 33(3):31-35(in Chinese).
[10] STOTT C A, UNDERHILL P R, BABBAR V K, et al. Pulsed eddy current detection of cracks in multilayer aluminum lap joints[J]. IEEE Sensors Journal, 2014, 15(2):956-962.
[11] THIRUNAVUKKARASU S, RAO B P C, JAYAKUMAR T, et al. Techniques for processing remote field eddy current signals from bend regions of steam generator tubes of prototype fast breeder reactor[J]. Annals of Nuclear Energy, 2011, 38(4):817-824.
[12] MIHALACHE O, YOKOYAMA K, UEDA M, et al. 3D finite element modeling for simulating remote field flaw detection in magnetic steam generator tubes[C]//AIP Conference Proceedings. American Institute of Physics, 2004, 700(1):421-428.
[13] KASAI N, FUJIWARA Y, SEKINE K, et al. Evaluation of back-side flaws of the bottom plates of an oil-storage tank by the RFECT[J]. NDT & E International, 2008, 41(7):525-529.
[14] SCHMIDT T R. The remote field eddy current inspection technique[J]. Materials Evaluation, 1984, 42(2):225-230.
[15] 张芸, 张伟, 师奕兵, 等. 基于远场涡流的管道局部缺陷定量评估方法[J]. 仪器仪表学报, 2016, 37(3):623-631. ZHANG Y, ZHANG W, SHI Y B, et al. Research on local defects quantification of pipes based on RFEC testing[J]. Chinese Journal of Scientific Instrument, 2016, 37(3):623-631(in Chinese).
[16] 徐志远, 林章鹏, 袁湘民, 等. 管道弯头缺陷检测外置式远场涡流探头设计[J]. 仪器仪表学报, 2017, 38(5):1119-1125. XU Z Y, LIN Z P, YUAN X M, et al. External remote field eddy current probe for defect detection at pipe elbows[J]. Chinese Journal of Scientific Instrument, 2017, 38(5):1119-1125(in Chinese).
[17] 曲民兴, 周连文. 导电平板的远场涡流现象[J]. 无损检测, 1997, 19(8):216-219. QU M X, ZHOU L W. Remote field eddy current phenomenon in metallic plates[J]. Nondestructive Testing, 1997, 19(8):216-219(in Chinese).
[18] SUN Y S, DENNIS R, HARRY Z. New Advances in detecting cracks in raised-head fasteners holes using rotational remote field eddy current technique[C]//2005 ASNT Fall Conference. 2005.
[19] 杨宾峰, 胥俊敏, 王晓锋, 等. 飞机铆接结构缺陷的远场涡流检测技术研究[J]. 传感技术学报, 2017, 30(10):1493-1496. YANG B F, XU J M, WANG X F, et al. Research on remote field eddy current technique applied to inspect riveted structure[J]. Chinese Journal of Sensors and Actuators, 2017, 30(10):1493-1496(in Chinese).
[20] 胥俊敏, 杨宾峰, 王晓锋, 等. 铆接结构缺陷检测中远场涡流传感器的优化设计[J]. 机械工程学报, 2017, 53(14):120-127. XU J M, YANG B F, WANG X F, et al. Optimal design of remote field eddy current sensor for detection of cracks in riveted structure[J]. Journal of Mechanical Engineering, 2017, 53(14):120-127(in Chinese).
[21] YANG B F, XU J M, WU H, et al. Magnetic field shielding technique for pulsed remote field eddy current inspection of planar conductors[J]. NDT & E International, 2017, 90:48-54.
文章导航

/