To optimize the aerodynamic performance of compressor blades, we propose a leading edge design method based on curvature distribution control, realizing direct and precise control of the leading edge curvature. This design method is applied to the Controlled Diffusion Airfoil (CDA) of an industrial compressor, and the performance of the airfoil with the designed Mach number at all incidences is calculated by the numerical simulation method. The results show that increasing the curvature of the leading edge can effectively broaden the allowable incidence range and reduce the peak diffusion factor. At the same angle of attack, the optimized airfoil can weaken the leading edge suction peak, suppress or even eliminate the separation bubble, and avoid the occurrence of early transition. Meanwhile, adjusting the curvature distribution to make it as "full" as possible and slowing down the decrease rate of curvature in the vicinity of the leading edge point can achieve the same effect. Theoretical analysis reveals that the curvature of the leading edge affects the initial flow pattern of the boundary layer by adjusting the static pressure distribution, therefore affecting the performance of the blade as well. In designing the leading edge geometry, it is necessary to ensure the curvature continuity, adjust the curvature distribution to reduce the strength of the leading edge suction peak, thus avoiding the occurrence of separation-induced transition.
[1] SUDER K L, CHIMA R V, STRAZISAR A J, et al. The effect of adding roughness and thickness to a transonic axial compressor rotor[J]. Journal of Turbomachinery, 1995, 117(4):491-505.
[2] GROUP A M, CARTER A D S. Blade profiles for axial-flow fans, pumps, compressors,etc[J]. Proceedings of the Institution of Mechanical Engineers, 1961, 175(1):775-806.
[3] TUCK E O. A criterion for leading-edge separation[J]. Journal of Fluid Mechanics, 1991, 222:33-37.
[4] WALRAEVENS R E, CUMPSTY N A. Leading edge separation bubbles on turbomachine blades[J]. Journal of Turbomachinery, 1995, 117(1):115-125.
[5] WHEELER A P S, SOFIA A, MILLER R J. The effect of leading-edge geometry on wake interactions in compressors[J]. Journal of Turbomachinery, 2009, 131(4):041013.
[6] ELMSTROM M E, MILLSAPS K T, HOBSON G V, et al. Impact of nonuniform leading edge coatings on the aerodynamic performance of compressor airfoils[J]. Journal of Turbomachinery, 2011, 133(4):041004.
[7] GOODHAND M N, MILLER R J. Compressor leading edge spikes:A new performance criterion[J]. Journal of Turbomachinery, 2011, 133(2):021006.
[8] 于贤君, 朱宏伟, 刘宝杰. 亚音叶型前缘形状对附面层参数影响[J]. 工程热物理学报, 2017, 38(10):2108-2118. YU X J, ZHU H W, LIU B J. Effects of leading-edge geometry on boundary layer parameters in subsonic airfoil[J]. Journal of Engineering Thermophysics, 2017, 38(10):2108-2118(in Chinese).
[9] 白涛, 邹正平, 张伟昊, 等. 前缘形状对涡轮叶栅损失影响的机理[J]. 航空动力学报, 2014, 29(6):1482-1489. BAI T, ZOU Z P, ZHANG W H, et al. Mechanism of effect of leading-edge geometry on the turbine blade cascade loss[J]. Journal of Aerospace Power, 2014, 29(6):1482-1489(in Chinese).
[10] 陆宏志, 徐力平, 方韧. 压气机叶片前缘形状的改进设计[J]. 航空动力学报, 2000, 15(2):129-132. LU H Z, XU L P, FANG R. Improvement of compressor blade leading edge design[J]. Journal of Aerospace Power, 2000,15(2):129-132(in Chinese).
[11] 陆宏志, 徐力平. 压气机叶片的带平台圆弧形前缘[J]. 推进技术, 2003, 24(6):532-536. LU H Z, XU L P. Circular leading edge with a flat for compressor blades[J]. Journal of Propulsion Technology, 2003,24(6):532-536(in Chinese).
[12] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1):142-158.
[13] 刘宝杰, 袁春香, 于贤君. 前缘形状对可控扩散叶型性能影响[J]. 推进技术, 2013, 34(7):890-897. LIU B J, YUAN C X, YU X J. Effects of leading-edge geometry on aerodynamic performance in controlled diffusion airfoil[J]. Journal of Propulsion Technology, 2013, 34(7):890-897(in Chinese).
[14] LIU B J, TAO Y, YU X J. Application of MCST method to design the blade leading edge in axial compressors[C]//2014 ISFMFE-6th International Symposium on Fluid Machinery and Fluid Engineering, 2014.
[15] 崔涛, 王松涛, 汪帅, 等. CST造型方法在涡轮叶片前缘修型中的应用研究[J]. 推进技术, 2019, 40(8):1767-1779. CUI T, WANG S T, WANG S, et al. Application of CST method on modifying leading edge of axial-flow turbine blade[J]. Journal of Propulsion Technology, 2019, 40(8):1767-1779(in Chinese).
[16] KORAKIANITIS T, WEGGE B. Three dimensional direct turbine blade design method[C]//32nd AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2002.
[17] HAMAKHAN I A, KORAKIANITIS T. Aerodynamic performance effects of leading-edge geometry in gas-turbine blades[J]. Applied Energy, 2010, 87(5):1591-1601.
[18] 宋寅, 顾春伟. 曲率连续的压气机叶片前缘设计方法[J]. 推进技术, 2013, 34(11):1474-1481. SONG Y, GU C W. Continuous curvature leading edge of compressor blading[J]. Journal of Propulsion Technology, 2013, 34(11):1474-1481(in Chinese).
[19] SONG Y, GU C W. Effects of curvature continuity of compressor blade profiles on their performances[C]//Proceedings of ASME Turbo Expo 2014:Turbine Technical Conference and Exposition. New York:ASME, 2014.
[20] 施恒涛, 刘宝杰, 于贤君. 基于多项式的曲率连续前缘造型方法及应用[J]. 航空动力学报, 2020, 35(2):397-409. SHI H T, LIU B J, YU X J. Polynomial-based continuous-curvature leading edge design method and its application[J]. Journal of Aerospace Power, 2020, 35(2):397-409(in Chinese).
[21] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-Part I:Model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413-422.
[22] KORAKIANITIS T, HAMAKHAN I A, REZAIENIA M A, et al. Design of high-efficiency turbomachinery blades for energy conversion devices with the three-dimensional prescribed surface curvature distribution blade design (CIRCLE) method[J]. Applied Energy, 2012, 89(1):215-227.
[23] ZHANG W H, ZOU Z P, YE J. Leading-edge redesign of a turbomachinery blade and its effect on aerodynamic performance[J]. Applied Energy, 2012, 93:655-667.
[24] 刘宝杰, 邓倩雯, 于贤君. 叶型任意位置损失提取方法及其应用[J]. 工程热物理学报, 2018, 39(1):68-75. LIU B J, DENG Q W, YU X J.Method for extracting the boundary layer loss in any position of the cascade and its application[J]. Journal of Engineering Thermophysics, 2018, 39(1):68-75(in Chinese).