电子电气工程与控制

基于稀疏贝叶斯学习的字典失配杂波空时谱估计方法

  • 章涛 ,
  • 钟伦珑 ,
  • 来燃 ,
  • 郭骏骋
展开
  • 中国民航大学 天津市智能信号与图像处理重点实验室, 天津 300300

收稿日期: 2020-08-03

  修回日期: 2020-09-29

  网络出版日期: 2020-11-13

基金资助

国家自然科学基金(U1733116);中央高校基本科研业务费中国民航大学资助专项(3122019048);中国民航大学蓝天青年学者项目

Sparse Bayesian learning method for eliminating dictionary mismatch in clutter space-time spectrum estimation

  • ZHANG Tao ,
  • ZHONG Lunlong ,
  • LAI Ran ,
  • GUO Juncheng
Expand
  • Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300, China

Received date: 2020-08-03

  Revised date: 2020-09-29

  Online published: 2020-11-13

Supported by

National Natural Science Foundation of China (U1733116); Fundamental Research Foundation for Central Universities-CAUC (3122019048); Young Scholar Foundation of Civil Aviation University of China

摘要

杂波谱稀疏恢复空时自适应处理(STAP)是一种有效减少杂波样本数需求的机载雷达杂波抑制方法。然而,空时平面被离散地划分为若干个网格点来构建空时导向矢量字典,当字典在失配时,杂波脊不能准确落在预先离散化的网格点上,稀疏恢复STAP性能严重下降。提出了一种基于稀疏贝叶斯学习的字典失配杂波空时谱估计方法,首先利用二维泰勒级数建立空时动态字典模型,然后将字典失配误差作为待估超参数构建贝叶斯稀疏恢复模型,并利用失配误差估计值对空时导向矢量字典进行修正,最后利用修正后的空时导向矢量字典重构杂波协方差矩阵,进而计算杂波空时谱。实验证明,该方法能够有效提高字典失配情况下的杂波谱稀疏恢复精度,杂波抑制性能优于已有字典预先离散化的稀疏贝叶斯学习STAP方法。

本文引用格式

章涛 , 钟伦珑 , 来燃 , 郭骏骋 . 基于稀疏贝叶斯学习的字典失配杂波空时谱估计方法[J]. 航空学报, 2021 , 42(6) : 324592 -324592 . DOI: 10.7527/S1000-6893.2020.24592

Abstract

Space-Time Adaptive Processing (STAP) via clutter spectrum sparse recovery can reduce the requirement for clutter sample size, and suppress the clutter of airborne radar effectively using limited training samples. The space-time plane is discretized into some grid points, and the space-time steering vector dictionary with discretized grid points is designed. However, the clutter ridge is not located exactly on the pre-discretized grid points in presence of dictionary mismatch. The dictionary mismatch effect degrades significantly the performance of STAP via sparse recovery. In this paper, a sparse Bayesian learning method for eliminating dictionary mismatch in clutter spectrum estimation is proposed. A dynamic dictionary is established by two-dimensional Taylor's series, and the dictionary mismatch biases are considered as parameters to be estimated by the sparse Bayesian learning method. The space-time steering dictionary is compensated by the estimated mismatch biases. The clutter-plus-noise covariance matrix is reconstructed with the compensated dictionary, and then the clutter space-time spectrum is calculated finally. Numerical results show that the proposed method can obtain better accuracy in clutter spectrum sparse recovery, and provide better performance of clutter suppression in comparison with the STAP using the sparse Bayesian learning method with the pre-discretized dictionary.

参考文献

[1] KLEMM R. Applications of space-time adaptive processing[M]. London:The Institution of Electrical Engineers, 2004:9-11.
[2] 毕权杨, 李旦, 张建秋. 空时自适应处理张量波束成形器的外积合成法[J]. 航空学报, 2019, 40(10):322939. BI Q Y, LI D, ZHANG J Q. An outer product synthesis approach to tensor beamformer for space-time adaptive processing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):322939(in Chinese).
[3] REED I S, MALLETT J D, BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 10(6):853-863.
[4] DUAN K Q, YUAN H D, XU H, et al. Sparsity-based non-stationary clutter suppression technique for airborne radar[J]. IEEE Access, 2018, 6:56162-56169.
[5] KLEMM R. Adaptive airborne MTI:An auxiliary channel approach[J]. IEE Proceedings-F:Communications, Radar and Signal Processing, 1987, 134(3):269-276.
[6] DIPIETRO R C. Extended factored space-time processing for airborne radar systems[C]//Proceedings of the 26th Asilomar Conference on Signals, Systems and Computers. Piscataway:IEEE Press, 1992:425-430.
[7] WANG Y L, CHEN J W, BAO Z, et al. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments[J]. IEEE Transactions on Aerospace and Electronic Systems,2003, 39(1):70-81.
[8] KLEMM R. New airborne MTI techniques[C]//Proceedings of the International Radar Conference. London, IEE, 1987:380-384.
[9] GOLLDSTEIN J S, REED I S, SCHARF L L. A multistage representation of the Wiener filter based on orthogonal projections[J]. IEEE Transactions on Information Theory, 1998, 44(7):2943-2959.
[10] CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2):21-30.
[11] ENDER J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5):1402-1414.
[12] 阳召成, 黎湘, 王宏强. 基于空时功率谱稀疏性的空时自适应处理技术研究进展[J]. 电子学报, 2014, 42(6):1194-1204. YANG Z C, LI X, WANG H Q. An overview of space-time adaptive processing technology based on sparsity of space-time power spectrum[J]. Acta Electronica Sinica, 2014, 42(6):1194-1204(in Chinese).
[13] 马泽强, 王希勤, 刘一民, 等. 基于稀疏恢复的空时二维自适应处理技术研究现状[J]. 雷达学报, 2014, 3(2):217-228. MA Z Q, WANG X Q, LIU Y M, et al. An overview on sparse recovery-based STAP[J]. Journal of Radars, 2014, 3(2):217-228(in Chinese).
[14] SUN K, MENG H D, WANG Y L, et al. Direct data domain STAP using sparse representation of clutter spectrum[J]. Signal Processing, 2011, 91(9):2222-2236.
[15] 孙珂, 张颢, 李刚, 等. 基于杂波谱稀疏恢复的空时自适应处理[J]. 电子学报, 2011, 39(6):1389-1393. SUN K, ZHANG H, LI G, et al. STAP via Recovery of clutter spectrum[J]. Acta Electronica Sinica, 2011, 39(6):1389-1393(in Chinese).
[16] YANG Z C, QIN Y, DE LAMARE R C, et al. Sparsity-based direct data domain space-time adaptive processing with intrinsic clutter motion[J]. Circuits, Systems, and Signal Processing, 2017, 36(1):219-246.
[17] WANG L, LIU Y, MA Z Q, et al. A novel STAP method based on structured sparse recovery of clutter spectrum[C]//Proceedings of the International Radar Conference. Piscataway:IEEE Press, 2015:561-565.
[18] DUAN K Q, WANG Z Q, XIE W C, et al. Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar[J]. IET Signal Processing, 2017, 11(5):544-553.
[19] YANG Z C, LI X, WANG H Q, et al. Knowledge-aided STAP with sparse-recovery by exploiting spatio-temporal sparsity[J]. IET Signal Processing, 2016, 10(2):150-161.
[20] ZHU H, LEUS G, GIANNAKIS G B. Sparsity-cognizant total least-squares for perturbed compressive sampling[J]. IEEE Transactions on Signal Processing, 2011, 59(5):2002-2016.
[21] ZHENG J, KAVEH M. Directions-of-arrival estimation using a sparse spatial spectrum model with uncertainty[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:IEEE Press, 2011:2848-2851.
[22] YANG Z, XIE L H, ZHANG C. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1):38-43.
[23] BAI L, ROY S, RANGASWAMY M. Compressive radar clutter subspace estimation using dictionary learning[C]//Proceedings of the International Radar Conference. Piscataway:IEEE Press, 2013:1-6.
[24] DUAN K Q, LIU W J, DUAN G, et al. Off-grid effects mitigation exploiting knowledge of the clutter ridge for sparse recovery STAP[J]. IET Radar, Sonar and Navigation, 2018, 12(5):557-564.
[25] BAI G T, TAO R, ZHAO J, et al. Parameter-searched OMP method for eliminating basis mismatch in space-time spectrum estimation[J]. Signal Processing, 2017, 138(1):11-15.
[26] YANG Z, LAMARE R C D. Enhanced knowledge-aided space-time adaptive processing exploiting inaccurate prior knowledge of the array manifold[J]. Digital Signal Processing, 2016, 60:262-276.
文章导航

/