进气道格栅能够避免电磁波进入腔体形成强散射,同时可改善飞行器表面进气道唇口造成的不连续性,有效降低飞行器的电磁散射特性。基于快速多极子算法,以斜切矩形口直腔体为研究对象,利用波导模式传输理论阐述了格栅的电磁屏蔽原理,分析了格栅尺寸与雷达散射截面(RCS)的关系,以及极化角与格栅布局方向的关系。基于干涉相消原理,提出了横向和纵向尺寸非均匀格栅设计,与均匀格栅的RCS进行了对比。数值仿真结果表明:横向非均匀格栅的RCS缩减在前向±15°范围内超过8 dB,纵向非均匀格栅在±35°范围内具有明显的RCS缩减效果,部分角度RCS缩减超过20 dB。此外还提出了双层格栅设计来减小格栅间距和深度,数值仿真结果表明当双层格栅中单层格栅横向间距小于半波长条件时,双层格栅能获得与单层格栅几乎相同的电磁屏蔽效果。
Inlet grilles can prevent electromagnetic waves from entering the cavity to form strong scattering sources, improve the surface discontinuousness of air vehicles, and thereby reduce their scattering characteristics. Taking the leaning rectangular straight cavity as the research object, this study illustrates the principle of electromagnetic shield using the theory of waveguide mode propagation based on the algorithm of fast multi-pole method. The relationship between the size of the grille and the Radar Cross Section (RCS) is analyzed as well as that between the polarization angle and the direction of the grille. The inhomogeneous grille in the longitudinal and horizontal dimensions is designed based on the principle of destructive interference. Numerical simulations indicate that: compared with that of the homogeneous grille, the RCS of the inhomogeneous grille in the horizontal dimension is reduced beyond 8 dB within the range of ±15° in the front direction. The RCS of the inhomogeneous grille in the longitudinal dimension is clearly reduced within the range of ±35°, and the numerical value is beyond 20 dB within partial angles. Additionally, two layers of grilles are proposed to decrease the depth along axis x and the space between adjacent grilles. Numerical simulations show that: when the space between adjacent grilles is smaller than half of the wavelength, almost the same electromagnetic shielding effects as those of dense single layer of grilles is achieved.
[1] 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013: 1-10. SANG J H. Low-observable technologies of aircraft[M]. Beijing:Aviation Industry Press, 2013: 1-10(in Chinese).
[2] 姬金祖, 黄沛霖, 马云鹏. 隐身原理[M]. 北京: 北京航空航天大学出版社, 2018: 1-4. JI J Z, HUANG P L. MA Y P.Stealthy theory[M].Beijing:Beihang University Press,2018;1-4(in Chinese)
[3] 胡列豪. 电大尺寸复杂终端涂层腔体的电磁散射研究[D]. 南京: 南京航空航天大学, 2007. HU L H. Electromagnetic scattering of electrically large dielectric-coated cavities with complex terminations[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).
[4] 黄浩然, 王宏伟. S型进气道隐身与气动综合特性数值分析[J]. 航空计算技术, 2015, 45(2): 92-95. HUANG H R, WANG H W. Nunerical ananlysis on S-shaped inlet stealth aerodynamics performance[J]. Aeronautical Computing Technique, 2015, 45(2): 92-95(in Chinese).
[5] 郁新华, 刘斌, 陶于金, 等. 背负式进气道设计及其气动性能研究[J]. 西北工业大学学报, 2007, 25(2): 270-273. YU X H, LIU B, TAO Y J, et al. Top-mounted inlet design and its aerodynamic performance[J]. Journal of Northwestern Polytechnical University, 2007, 25(2): 270-273(in Chinese).
[6] 李岳锋, 廖华琳, 卿太木, 等. 偏心比对S形流道雷达散射特性的影响[J]. 燃气涡轮试验与研究, 2016, 29(4):13-16. LI Y F, LIAO H L, QING T M, et al. Investigation on radar cross-section of S-shaped channel with different eccentric ratio[J]. Gas Turbine Experiment and Research, 2016, 29(4):13-16(in Chinese).
[7] 石磊, 郭荣伟. 蛇形进气道的电磁散射特性[J]. 航空学报, 2007, 28(6): 1296-1301. SHI L, GUO R W. Electromagnetic scattering characteristics of serpentine inlet[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1296-1301(in Chinese).
[8] 高翔, 施永强, 杨青真, 等. 介质涂覆位置对双S弯排气系统电磁散射特性影响研究[J]. 物理学报, 2015(2):102-111. GAO X, SHI Y Q, YANG Q Z, et al. Electromagnetic scattering characteristics of double S-shape exhaust nozzle with different coating medium parts[J]. Acta Physica Sinica, 2015(2):102-111(in Chinese).
[9] 张乐. 飞翼布局耦合进排气的气动与隐身综合设计研究[D]. 西安: 西北工业大学, 2016: 181-212. ZHANG L. Research on integrated design of aerodynamic and stealthy performance with intake and exhaust for flying-wing layout[D]. Xi’an: Northwestern Polytechnical University, 2016: 181-212(in Chinese).
[10] 郑伟连. 无人机动力进排气系统隐身设计分析[J]. 航空动力, 2019(4): 28-31. ZHENG W L. Analysis of stealth design for UAV inlet and exhaust systems[J]. Aerospace Power, 2019(4): 28-31(in Chinese).
[11] POMPOSO J A, RODRÍGUEZ J, GRANDE H. Polypyrrole-based conducting hot melt adhesives for EMI shielding applications[J]. Synthetic Metals, 1999, 104(2): 107-111.
[12] RUMPF R L, SHIPPEN W B. Comparison of aerogrids and punched plates for smoothing flow from short annular diffusers: NASA CR-1209060[R]. Washington, D.C.: NASA, 1972.
[13] 张乐, 周洲, 许晓平. 飞翼无人机保形进气道耦合进口格栅气动与隐身综合特性[J]. 航空动力学报, 2018, 33(7): 1612-1621. ZHANG L, ZHOU Z, XU X P. Aerodynamic and stealthy integrated performance of conformal inlet coupling entrance grille of flying wing unmanned aerial vehicle[J]. Journal of Aerospace Power, 2018, 33(7): 1612-1621(in Chinese).
[14] 张乐, 周洲, 许晓平. 进气道进口格栅电磁散射特性及试验验证[J]. 南京航空航天大学学报, 2017, 49(3): 361-369. ZHANG L, ZHOU Z, XU X P. Electromagnetic scattering characteristics and experimental verification of inlet grille[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(3): 361-369(in Chinese).
[15] 王长伟. 金属网栅用于隐身技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. WANG C W. Research on the metallic mesh for stealth technololgy[D]. Harbin: Harbin Institute of Technology, 2006(in Chinese).
[16] 梁德旺, 郭荣伟, 赵明桂. 格栅对进气道的气动性能和电磁散射特性的影响[J]. 航空学报, 1998,19(5): 567-569. LIANG D W, GUO R W, ZHAO M G. Effect of honeycomb on aerodynamic performance and radar cross section of inlet[J]. Acta Aeronautica et Astronautica Sinica, 1998,19(5): 567-569(in Chinese).
[17] SONG J M, LU C C, CHEW W C. Fase illiois solver code[J]. IEEE Transactions on Antennas and Propagation, 1998, 40(3):27-34.
[18] ENGHETA N, MURPHY W D, ROKHLIN V, et al. The fast multipole method(FMM) for electromagnetic scattering problems[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(6): 634-641.
[19] 王浩刚. 电大尺寸含腔体复杂目标矢量电磁散射一体化精确建模与高效算法研究[D]. 成都: 电子科技大学, 2001: 68-92. WANG H G. Research on rigorous modeling and high efficient algorithms for 3D EM scattering by large body with open cavities[D]. Chengdu: University of Electronic Science and Technology of China, 2001: 68-92(in Chinese).
[20] 阙肖峰. 导体介质组合目标电磁问题的精确建模和快速算法研究[D]. 成都: 电子科技大学, 2008: 50-80. QUE X F. Research on rigorous modeling and fast algorithms for 3D electromagnetic problem for composite conducting and dielectric targets[D]. Chengdu: University of Electronic Science and Technology of China, 2008: 50-80(in Chinese).
[21] 顾茂章, 张克潜. 微波技术[M]. 北京: 清华大学出版社, 2008:78-85. GU M Z,ZHANG K Q. Microwave technology[M]. Beijing: Tsinghua University Press, 2008: 78-85(in Chinese).
[22] 李承祖,赵凤章. 电动力学教程[M]. 2版(修订版). 长沙: 国防科技大学出版社, 1997: 216-247. LI C Z, ZHAO F Z. Electrodynamics course[M]. 2nd ed Revised. Changsha: Press of National University of Defense Technology, 1997: 216-247(in Chinese).
[23] 徐胜, 徐元铭. 有源对消隐身系统设计研究[J]. 航空电子技术, 2014, 45(3): 26-32. XU S, XU Y M. Research on active cancellation stealth system design[J]. Avionics Technology, 2014, 45(3): 26-32(in Chinese).