为更精准地考虑平均应力对单轴恒幅疲劳寿命的影响,在等效驱动力类平均应力模型的基础上,引入材料循环本构并提出了一个新的平均应力模型。定性地,该模型能够在更广泛寿命值范围和应力比范围内描述多种材料的等寿命线形状;定量地,该模型能够用来预测其他应力比下的疲劳寿命值,且预测值与试验数据符合良好。随后,还提出了一种获取模型系数的方式,能够在保证数据拟合可靠度的前提下进一步减少试验成本。所提出的平均应力模型有潜力为材料性能手册的编纂提供支持,并对相关工程方法提供改进方向。
To precisely consider the effects of mean stress in evaluating uniaxial constant-amplitude fatigue lifetime, this paper proposes a mean-stress model on the basis of driving-force models, and the main idea of proposed model is to introduce material cyclic constitutive. Qualitatively, the model is capable of describing the shapes of constant-life curves for various materials in broader range of given fatigue lifetime as well as cyclic stress ratio; quantitatively, the model is capable of predicting fatigue lifetime under other cyclic stress ratios with satisfying agreements. Moreover, a method to obtain model parameters is also proposed, which further reduces test costs while ensuring the reliability of fitted data. The proposed mean-stress model possesses the potential to provide supports for compiling handbooks of material fatigue properties, and to offer guidelines for improvements of relevant engineering approaches.
[1] COFFIN L F. A study of the effects of cyclic thermal stresses on a ductile metal:KAPL-853[R]. New York:Transactions of the American Society of Mechanical Engineers, 1953.
[2] MANSON S S. Behavior of materials under conditions of thermal stress:Report 1170[R]. Cleveland:Lewis Flight Propulsion Laboratory, 1954.
[3] PARIS P, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4):528-533.
[4] FUCHS H O, STEPHENS R I, SAUNDERS H. Metal fatigue in engineering[J]. Journal of Engineering Materials and Technology, 1981, 103(4):346.
[5] SENDECKYJ G P. Constant life diagrams-a historical review[J]. International Journal of Fatigue, 2001, 23(4):347-353.
[6] SCHIJVE J. Fatigue of structures and materials[M]. Dordrecht:Springer Netherlands, 2009.
[7] WALKER K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum[M]//Effects of Environment and Complex Load History on Fatigue Life. West Conshohocken:ASTM International:1-1-14.
[8] SMITH K N, WATSON P, TOPPER T H. Stress-strain function for the fatigue of metals[EB/OL]. 1970:767-778.
[9] DOWLING N E, CALHOUN C A, ARCARI A. Mean stress effects in stress-life fatigue and the Walker equation[J]. Fatigue & Fracture of Engineering Materials & Structures, 2009, 32(3):163-179.
[10] 吴学仁.飞机结构金属材料力学性能手册[M].北京:航空工业出版社,1981. WU X R.Handbook of fatigue properties of aeronautical metals[M]. Beijing:Aviation Industry Press, 1981(in Chinese).
[11] Military handbook:Metallic materials and elements for aerospace vehicle structures[R].Washington,D.C.:NASA, 1994.
[12] BURGER R, LEE Y L. Assessment of the mean-stress sensitivity factor method in stress-life fatigue predictions[J]. Journal of Testing and Evaluation, 2013, 41(2):20120035.
[13] 姚卫星. 结构疲劳寿命分析[M]. 北京:国防工业出版社, 2003. YAO W X. Fatigue life prediction of structures[M]. Beijing:National Defense Industry Press, 2003(in Chinese).
[14] 郑修麟. 循环局部应力-应变与疲劳裂纹起始寿命[J]. 固体力学学报, 1984, 5(2):175-184. ZHENG X L. Cyclic local stress-strain and fatigue crack initiation life[J]. Acta Mechanica Solida Sinica, 1984, 5(2):175-184(in Chinese).
[15] ZHU M L, XUAN F Z, TU S T. Effect of load ratio on fatigue crack growth in the near-threshold regime:A literature review, and a combined crack closure and driving force approach[J]. Engineering Fracture Mechanics, 2015, 141:57-77.
[16] GOODMAN J. Mechanics applied to engineering[M] Vol. 1, 9th edition. London:Longmans Green and Co., 1930.
[17] GERBER W Z. Bestimmung der zulässigen Spannungen in Eisen-Constructionen[J]. Z Bayer Archit Ing Ver 1874; 6(6):101-10.
[18] SODERBERG C R. ASME Transactions 52, APM-52-2, pp. 13-28.
[19] INCE A, GLINKA G. A modification of Morrow and Smith-Watson-Topper mean stress correction models[J]. Fatigue & Fracture of Engineering Materials & Structures, 2011, 34(11):854-867.
[20] LIU S Y, CHEN I W. Fatigue of yttria-stabilized zirconia:I, fatigue damage, fracture origins, and lifetime prediction[J]. Journal of the American Ceramic Society, 1991, 74(6):1197-1205.
[21] NIHEI M, HEULER P, BOLLER C, et al. Evaluation of mean stress effect on fatigue life by use of damage parameters[J]. International Journal of Fatigue, 1986, 8(3):119-126.
[22] BENEDETTI M, BERTO F, LE BONE L, et al. A novel Strain-Energy-Density based fatigue criterion accounting for mean stress and plasticity effects on the medium-to-high-cycle uniaxial fatigue strength of plain and notched components[J]. International Journal of Fatigue, 2020, 133:105397.
[23] LORENZO F, LAIRD C. A new approach to predicting fatigue life behavior under the action of mean stresses[J]. Materials Science and Engineering, 1984, 62(2):205-210.
[24] MOFTAKHAR A, BUCZYNSKI A, GLINKA G. Calculation of elasto-plastic strains and stresses in notches under multiaxial loading[J]. International Journal of Fracture, 1994, 70(4):357-373.
[25] PARK J, NELSON D. Evaluation of an energy-based approach and a critical plane approach for predicting constant amplitude multiaxial fatigue life[J]. International Journal of Fatigue, 2000, 22(1):23-39.
[26] 高镇同. 航空金属材料疲劳性能手册[M]. 北京:北京航空材料研究所, 1981. GAO Z T. A handbook on fatigue properties of aeronautical material[M]. Beijing:Beijing Material Research Institute, 1981(in Chinese).
[27] RALPH I S, ALI F, ROBERT R S,et al. Metal fatigue in engineering[M].Hoboken:John Wiley Sons, Inc, 2001.
[28] 赵少汴, 王忠保. 抗疲劳设计-方法与数据[M]. 北京:机械工业出版社,1997. ZHAO S B, WANG Z B. Anti-fatigue design-methods and data[M]. Beijing:China Machine Press, 1997(in Chinese).