固体力学与飞行器总体设计

面向集中力扩散的回转曲面加筋拓扑优化方法

  • 李增聪 ,
  • 陈燕 ,
  • 李红庆 ,
  • 田阔 ,
  • 王刚 ,
  • 高峰 ,
  • 王博
展开
  • 1. 大连理工大学 工业装备结构分析国家重点实验室 工程力学系, 大连 116024;
    2. 中国空间技术研究院 总体设计部, 北京 100094

收稿日期: 2020-08-07

  修回日期: 2020-10-28

  网络出版日期: 2020-11-06

基金资助

国家自然科学基金(11902065,11825202);中国博士后科学基金面上项目(2019M651107);兴辽英才计划(XLYC1802020)

Topology optimization method for concentrated force diffusion on stiffened curved shell of revolution

  • LI Zengcong ,
  • CHEN Yan ,
  • LI Hongqing ,
  • TIAN Kuo ,
  • WANG Gang ,
  • GAO Feng ,
  • WANG Bo
Expand
  • 1. Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;
    2. Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094, China

Received date: 2020-08-07

  Revised date: 2020-10-28

  Online published: 2020-11-06

Supported by

National Natural Science Foundation of China (11902065, 11825202); China Postdoctoral Science Foundation Funded Project (2019M651107); Liaoning Revitalization Talents Program (XLYC1802020)

摘要

为了提高航天器回转曲面加筋型连接结构的集中力扩散效率,需要开展回转曲面加筋集中力扩散结构设计。传统放射肋设计方法普遍依赖设计经验、难以满足集中力高效扩散需求。因此,提出一种面向集中力扩散的回转曲面加筋拓扑优化方法。第1步,建立了一种基于各向异性过滤技术的集中力扩散拓扑优化方法,保证拓扑优化结果满足回转曲面加筋制造工艺要求;第2步,提出了一种基于网格变形技术的拓扑优化结果智能重构方法,可高效准确地对回转曲面加筋拓扑优化结果进行模型自动重构。基于所提出方法,以卫星平台对接环这种典型的回转曲面加筋壳为对象开展算例研究,并将优化结果与传统放射肋设计结果进行对比。结果表明,所提出的优化方法可得到加筋构型清晰、满足回转曲面加筋制造工艺要求的优化结果,且具有集中力扩散效率高、网格质量依赖性低、拓扑特征重构高效等优点。

本文引用格式

李增聪 , 陈燕 , 李红庆 , 田阔 , 王刚 , 高峰 , 王博 . 面向集中力扩散的回转曲面加筋拓扑优化方法[J]. 航空学报, 2021 , 42(9) : 224616 -224616 . DOI: 10.7527/S1000-6893.2020.24616

Abstract

Designing concentrated force diffusion structures on stiffened curved shells is necessary to improve the concentrated force diffusion ability of spacecraft structure connectors. The traditional radial rib design method generally depends on design experience and is difficult to satisfy the requirement of efficient concentrated force diffusion in most cases. Therefore, a topology optimization method for concentrated force diffusion on stiffened curved shells is proposed in this paper. In the first step, a topology optimization method for concentrated force diffusion is developed based on the anisotropic filtering technique to ensure that the topology optimization result satisfies the manufacturing requirement of stiffened curved shells. In the second step, an intelligent reconstruction method for the topology optimization result is proposed based on the mesh deformation technique, which can efficiently and accurately reconstruct the topology optimization result in the form of the stiffened curved shell of revolution. Based on the proposed method, a case study is conducted on the docking ring of the satellite platform, which is a typical structure of stiffened curved shell. The result of the proposed optimization method is compared with those of the traditional radial rib design method and the traditional topology optimization method by commercial software. Comparison results indicate that the proposed optimization method can obtain optimization results with a clear stiffener configuration and satisfy the manufacturing requirements of the stiffened curved shell, with the advantages of good concentration force diffusion efficiency, low dependence on mesh quality, and efficient reconstruction ability of topology features.

参考文献

[1] 中国空间技术研究院. 东方红3A卫星平台[EB/OL]. (2015-07-31)[2020-08-01]. https://www.cast.cn/news/2875. China Academy of Space Technology. Satellite platform of Red East 3A[EB/OL]. (2015-07-31)[2020-08-01]. https://www.cast.cn/news/2875 (in Chinese).
[2] 牛飞, 王博, 程耿东. 基于拓扑优化技术的集中力扩散结构设计[J]. 力学学报, 2012, 44(3):529-563. NIU F, WANG B, CHENG G D. Optimum topology design of structural part for concentration force transmission[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3):529-563(in Chinese).
[3] 张家鑫, 王博, 牛飞, 等. 分级型放射肋短壳结构集中力扩散优化设计[J]. 计算力学学报, 2014, 31(2):141-148. ZHANG J X, WANG B, NIU F, et al. Optimal design of concentrated force diffusion for short shell structure using hierarchical radial ribs[J]. Chinese Journal of Computational Mechanics, 2014, 31(2):141-148(in Chinese).
[4] 金栋平, 纪斌. 机翼后缘柔性支撑结构的拓扑优化[J]. 航空学报, 2015, 36(8):2681-2687. JIN D P, JI B. Topology optimization of flexible support structure for trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2681-2687(in Chinese).
[5] 朱继宏, 郭文杰, 张卫红, 等. 多组件结构系统布局拓扑优化中处理组件干涉约束的惩罚函数方法[J]. 航空学报, 2016, 37(12):3721-3733. ZHU J H, GUO W J, ZHANG W H, et al. A penalty function based method for dealing with overlap constraints in integrated layout and topology optimization design of multi-component systems[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3721-3733(in Chinese).
[6] 张明, 刘文斌, 李闯, 等. 优化驱动的起落架结构设计方法[J]. 航空学报, 2015, 36(3):857-864. ZHANG M, LIU W B, LI C, et al. Optimization-driven design method of landing gear structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):857-864(in Chinese).
[7] 牛飞. 结构拓扑优化设计若干问题的建模、求解及解读[D]. 大连:大连理工大学, 2013:95-105. NIU F. Modeling, solution and interpretation of several structural topological optimum designs[D]. Dalian:Dalian University of Technology, 2013:95-105(in Chinese).
[8] 张家鑫. 集中力扩散结构的优化设计[D]. 大连:大连理工大学, 2014:36-48. ZHANG J X. Design optimization of concentrated force diffusions structures[D]. Dalian:Dalian University of Technology, 2014:36-48(in Chinese).
[9] GAO T, QIU L, ZHANG W H. Topology optimization of continuum structures subjected to the variance constraint of reaction forces[J]. Structural and Multidisciplinary Optimization, 2017, 56(4):755-765.
[10] NIU C, ZHANG W H, GAO T. Topology optimization of continuum structures for the uniformity of contact pressures[J]. Structural and Multidisciplinary Optimization, 2019, 60(1):185-210.
[11] CAO Y, GU X, ZHU J H, et al. Precise output loads control of load-diffusion components with topology optimization[J]. Chinese Journal of Aeronautics, 2020, 33(3):933-946.
[12] 张晓颖, 李林生, 吴会强, 等. 薄壁贮箱集中力扩散研究[J]. 强度与环境, 2016, 43(5):38-44. ZHANG X Y, LI L S, WU H Q, et al. Research on concentrated force diffusion for weld thin-wall tank[J]. Structure & Environment Engineering, 2016, 43(5):38-44(in Chinese).
[13] 梅勇, 冯韶伟, 雷勇军, 等. 捆绑联接舱段集中力扩散结构优化设计[J]. 机械设计与制造, 2016(3):200-203. MEI Y, FENG S W, LEI Y J, et al. Structural optimization of the concentrated force diffusion structure in strap-on linkage section[J]. Machinery Design & Manufacture, 2016(3):200-203(in Chinese).
[14] SCHRAMM U, ZHOU M. Recent developments in the commercial implementation of topology optimization[C]//IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Dordrecht:Springe, 2006:239-248.
[15] VATANABE S L, LIPPI T N, LIMA C R D, et al. Topology optimization with manufacturing constraints:A unified projection-based approach[J]. Advances in Engineering Software, 2016, 100(10):97-112.
[16] LI H, LI P, GAO L, et al. A level set method for topological shape optimization of 3D structures with extrusion constraints[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283:615-635.
[17] ALLAN R G, CASPER S A. An explicit parameterization for casting constraints in gradient driven topology optimization[J]. Structural and Multidisciplinary Optimization, 2011, 44(6):875-881.
[18] ZHU J H, GU X J, ZHANG W H, et al. Structural design of aircraft skin stretch-forming die using topology optimization[J]. Journal of Computational & Applied Mathematics, 2013, 246(1):278-288.
[19] LIU S T, LI Q H, CHEN W J, et al. H-DGTP-a Heaviside-function based directional growth topology parameterization for design optimization of stiffener layout and height of thin-walled structures[J]. Structural and Multidisciplinary Optimization, 2015, 52(5):903-913.
[20] 覃琨, 方宗德, 卞翔,等. 基于MATLAB的机械零件拓扑优化结果几何重构研究[J]. 机械科学与技术, 2013, 32(11):65-68. QIN K, FANG Z D, BIAN X, et al.CAD model reconstruction from topology optimization results based on MATLAB process[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(11):65-68(in Chinese).
[21] 葛文杰, 黄杰, 杨方. 拓扑优化技术及其在汽车设计中的应用[J]. 机床与液压, 2007, 35(8):11-14. GE W J, HUANG J, YANG F. Topology optimization technology and its utility in automotive industry[J].Machine Tool & Hydraulics, 2007, 35(8):11-14(in Chinese).
[22] 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2):303-319. ZHANG W W, GAO C Q, YE Z Y. Researchprogress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):303-319(in Chinese).
[23] 唐静, 邓有奇, 马明生, 等. 飞翼气动优化中参数化和网格变形技术[J]. 航空学报, 2015, 36(5):1480-1490. TANG J, DENG Y Q, MA M S, et al. Parameterization and grid deformation techniques for flying-wing aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1480-1490(in Chinese).
[24] LI L, YUAN T, Li Y, et al. Multidisciplinary design optimization based on parameterized free-form deformation for single turbine[J]. AIAA Journal, 2019, 57(5):2075-2087.
[25] MARTIN-BURGOS M J, GONZÁLEZ-JUÁREZ D, ANDRÉS-PÉREZ E. A novel surface mesh deformation method for handling wing-fuselage intersections[J]. Chinese Journal of Aeronautics, 2017, 30(1):264-273.
[26] ZHANG W H, WANG D, YANG J. A parametric mapping method for curve shape optimization on 3D panel structures[J]. International Journal for Numerical Methods in Engineering, 2010, 84(4):485-504.
[27] WANG D, ZHANG W H. A bispace parameterization method for shape optimization of thin-walled curved shell structures with openings[J]. International Journal for Numerical Methods in Engineering, 2012, 90(13):1598-1617.
[28] LIU X, QIN N, XIA H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2):405-423.
[29] TAO J, SUN G, SI J, et al. A robust design for a winglet based on NURBS-FFD method and PSO algorithm[J]. Aerospace Science and Technology, 2017, 70:568-577.
[30] RENDALL T C S, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17):6231-6249.
[31] WANG G, CHEN X, LIU Z K. Mesh deformation on 3D complex configurations using multistep radial basis functions interpolation[J]. Chinese Journal of Aeronautics, 2018, 31(4):660-671.
[32] SIGMUND O. On the design of compliant mechanisms using topology optimization[J]. Journal of Structural Mechanics, 1997, 25(4):493-524.
[33] BOURDINB. Filters in topology optimization[J]. International Journal for Numerical Methods in Engineering, 2001, 50(9):2143-2158.
[34] AAGE N, LAZAROV B S. Parallel framework for topology optimization using the method of moving asymptotes[J]. Structural and Multidisciplinary Optimization, 2013, 47(4):493-505.
[35] ALEXANDERSEN J, SIGMUND O, AAGE N. Large scale three-dimensional topology optimization of heat sinks cooled by natural convection[J]. International Journal of Heat and Mass Transfer, 2016, 100(9):876-891.
[36] LAZAROV B S, SIGMUND O. Filters in topology optimization based on Helmholtz-type differential equations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(6):765-781.
[37] BENDSØE M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989, 1(4):193-202.
[38] ROZVANY G I N. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics[J]. Structural and Multidisciplinary Optimization, 2001, 21(2):90-108.
[39] GUEST J K, PRÉVOST J H, BELYTSCHKO T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions[J]. International Journal for Numerical Methods in Engineering, 2004, 61(2):238-254.
[40] SVANBERG K. The method of moving asymptotes-A new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373.
[41] JIN R, CHEN W,SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1):1-13.
文章导航

/