电子电气工程与控制

空中交通网络模体识别及子图结构韧性评估

  • 王兴隆 ,
  • 石宗北 ,
  • 陈仔燕
展开
  • 中国民航大学 空中交通管理学院, 天津 300300

收稿日期: 2020-09-04

  修回日期: 2020-09-23

  网络出版日期: 2020-10-30

基金资助

国家重点研发计划(2016YFB0502405);中央高校基本科研业务经费专项资金(3122019191)

Air traffic network motif recognition and sub-graph structure resilience evaluation

  • WANG Xinglong ,
  • SHI Zongbei ,
  • CHEN Ziyan
Expand
  • College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China

Received date: 2020-09-04

  Revised date: 2020-09-23

  Online published: 2020-10-30

Supported by

National Key Basic Research Program of China(2016YFB0502405); Fundamental Research Funds for the Central Universities (3122019D027)

摘要

研究空中交通网络的结构特征是理解网络性质的重要手段。从局部角度出发,以构成空中交通网络的子图结构为研究对象,对其模体特性进行识别。通过对子图浓度在外界扰动下的变化情况进行分析,提出子图结构韧性概念以表征网络拓扑结构的动态演化规律。以华东地区空中交通网络为例,对低阶子图结构进行了模体特性识别,并对不同扰动下子图结构韧性的变化情况进行评估。实证结果表明,子图结构的模体特性符合空中交通网络的实际连通度需求;在网络受扰动及恢复过程中,子图相对浓度较为稳定,子图结构韧性和网络宏观结构变化之间较为一致。对于揭示节点间连接的偏好及航路结构合理性,网络受扰动及恢复过程背后的底层机制,网络整体与局部结构之间的关系等有着一定的研究意义。

本文引用格式

王兴隆 , 石宗北 , 陈仔燕 . 空中交通网络模体识别及子图结构韧性评估[J]. 航空学报, 2021 , 42(7) : 324715 -324715 . DOI: 10.7527/S1000-6893.2020.24715

Abstract

The structural characteristics of air traffic networks are important for the understanding of the macroscopic nature and resilience of the networks. The sub-graph structure of the air traffic network is studied from a local perspective to identify the characteristics of its phantom. By analyzing the change of sub-graph concentration under external disturbances, we propose the concept of sub-graph structural toughness to characterize the dynamic evolution law of the underlying network topology. The phantom characteristics of the low-order sub-graph structure are identified, and the changes in the structural toughness of the sub-graph under different disturbances are evaluated with the air traffic network in East China as an example. The empirical results show that the phantom characteristics of the sub-graph structure meet the practical connectivity requirements of the air traffic network; in the process of disturbances and network recovery, the relative concentration of the sub-graph is relatively stable, and the structural toughness of the sub-graph is more consistent with the changes in the macro structure of the network. It has certain research significance for revealing the preference of the connection between the nodes and the rationality of the route structure, the underlying mechanism behind the network disturbance and recovery process, and the relationship between the overall and local structures of the network.

参考文献

[1] 武喜萍, 杨红雨, 韩松臣. 基于复杂网络的空中交通特征与延误传播分析[J]. 航空学报, 2017, 38(S1):721473. WU X P, YANG H Y, HAN S C. Analysis of properties and delay propagation of air traffic based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):721473(in Chinese).
[2] 李善梅. 空中交通拥挤的识别与预测方法研究[D]. 天津:天津大学, 2014:22-35. LI S M. Research on identification and prediction methods of air traffic congestion[D]. Tianjin:Tianjin University, 2014:22-35(in Chinese).
[3] PIEN K C, HAN K, SHANG W L, et al. Robustness analysis of the European air traffic network[J].Transportmetrica A:Transport Science, 2015, 11(9):772-792.
[4] XU Z W, HARRISS R. Exploring the structure of the US intercity passenger air transportation network:A weighted complex network approach[J].GeoJournal, 2008, 73(2):87-102.
[5] 王兴隆, 齐雁楠, 潘维煌. 基于功能脆弱性的空中交通相依网络流量分配[J]. 航空学报, 2020, 41(4):323479. WANG X L, QI Y N, PAN W H. Flow allocation of air traffic interdependent network based on functional vulnerability[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(4):323479(in Chinese).
[6] ZHANG J, CAO X B, DU W B, et al.Evolution of Chinese airport network[J]. Physica A:Statistical Mechanics and Its Applications, 2010, 389(18):3922-3931.
[7] 陈娱, 王姣娥, 金凤君. 中国国内航空网络的可靠性评价[J]. 地理与地理信息科学, 2015, 31(3):59-64, 2. CHEN Y, WANG J E,JIN F J. Robustness and fragility of Chinese air transport network[J]. Geography and Geo-Information Science, 2015, 31(3):59-64, 2(in Chinese).
[8] DINH L T, PASMAN H, GAO X D, et al. Resilience engineering of industrial processes:Principles and contributing factors[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(2):233-241.
[9] PRŽULJ N. Biological network comparison using graphlet degree distribution[J]. Bioinformatics, 2007, 23(2):e177-e183.
[10] MENCK P J, HEITZIG J, KURTHS J, et al. How dead ends undermine power grid stability[J]. Nature Communications, 2014, 5:3969.
[11] 李凡, 张杰勇. 指挥信息系统网络结构的韧性问题研究[J]. 电光与控制, 2020, 27(4):49-54. LI F, ZHANG J Y. On resilience of network structure of command information system[J]. Electronics Optics & Control, 2020, 27(4):49-54(in Chinese).
[12] TANG J Q, HEINIMANN H, HAN K, et al. Evaluating resilience in urban transportation systems for sustainability:A systems-based Bayesian network model[J]. Transportation Research Part C:Emerging Technologies, 2020, 121:102840.
[13] SHEN-ORR SS, MILO R, MANGAN S, et al. Network motifs in the transcriptional regulation network of Escherichia coli[J]. Nature Genetics, 2002, 31(1):64-68.
[14] SCHULTZ P, HEITZIG J, KURTHS J. Detours around basin stability in power networks[J]. New Journal of Physics, 2014, 16(12):125001.
[15] GOROCHOWSKI T E, GRIERSON C S, DI BERNARDO M. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks[J]. Science Advances, 2018, 4(3):eaap9751.
[16] LESKOVEC J, HORVITZ E. Planetary-scale views on an instant-messaging network[DB/OL]. arxiv preprint:0803.0939,2008.
[17] 丁明, 韩平平. 加权拓扑模型下的小世界电网脆弱性评估[J]. 中国电机工程学报, 2008, 28(10):20-25. DING M, HAN PP. Vulnerability assessment to small-world power grid based on weighted topological model[J]. Proceedings of the CSEE, 2008, 28(10):20-25(in Chinese).
[18] CHASSIN D P, POSSE C. Evaluating North American electric grid reliability using the Barabási-Albert network model[J]. Physica A:Statistical Mechanics and Its Applications, 2005, 355(2-4):667-677.
[19] 徐立新. 基于复杂系统理论的电网故障时空分布特性及结构脆弱性研究[D]. 广州:华南理工大学, 2014:90-99. XU L X. Study on fault's temporal-spatial distribution characteristics and structural vulnerability in power grid based on complex system theory[D]. Guangzhou:South China University of Technology, 2014:90-99(in Chinese).
[20] 刘咏梅, 彭琳, 赵振军. 基于小世界网络的微博谣言传播演进研究[J]. 复杂系统与复杂性科学, 2014, 11(4):54-60. LIU Y M, PENG L, ZHAO Z J. The evolution of rumor spread onmicrblog based on small-world network[J]. Complex Systems and Complexity Science, 2014, 11(4):54-60(in Chinese).
[21] KURANT M, THIRAN P. Extraction and analysis of traffic and topologies of transportation networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 74(3pt 2):036114.
[22] WERNICKE S, RASCHE F. FANMOD:A tool for fast network motif detection[J]. Bioinformatics, 2006, 22(9):1152-1153.
[23] WERNICKE S. Efficient detection of network motifs[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2006, 3(4):347-359.
[24] OSEI-ASAMOAH A, LOWNES N E. Complex network method of evaluating resilience in surface transportation networks[J]. Transportation Research Record:Journal of the Transportation Research Board, 2014, 2467(1):120-128.
[25] WANG Y J, ZHAN J M, XU X H, et al. Measuring the resilience of an airport network[J]. Chinese Journal of Aeronautics, 2019, 32(12):2694-2705.
[26] 李兆隆, 金淳, 胡畔, 等. 基于弹复性的交通网络应急恢复阶段策略优化[J]. 系统工程理论与实践, 2019, 39(11):2828-2841. LI Z L, JIN C, HU P, et al.Resilience-based recovery strategy optimization in emergency recovery phase for transportation networks[J]. Systems Engineering-Theory & Practice, 2019, 39(11):2828-2841(in Chinese).
[27] 缪莉莉, 韩传峰, 刘亮, 等. 基于模体的科学家合作网络基元特征分析[J]. 科学学研究, 2012, 30(10):1468-1475. MIAO L L, HAN C F, LIU L, et al. Using motif to characterize building block of scientific collaboration networks[J]. Studies in Science of Science, 2012, 30(10):1468-1475(in Chinese).
文章导航

/