流体力学与飞行力学

马赫数6柱-裙激波/边界层干扰直接模拟

  • 孙东 ,
  • 刘朋欣 ,
  • 沈鹏飞 ,
  • 童福林 ,
  • 郭启龙
展开
  • 空气动力学国家重点实验室, 绵阳 621000

收稿日期: 2020-08-31

  修回日期: 2020-09-25

  网络出版日期: 2020-10-30

基金资助

国家重点研发计划(2019YFA0405300);国家自然科学基金(11802324);国家数值风洞工程

Direct numerical simulation of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach number 6

  • SUN Dong ,
  • LIU Pengxin ,
  • SHEN Pengfei ,
  • TONG Fulin ,
  • GUO Qilong
Expand
  • State Key Laboratory of Aerodynamics, Mianyang 621000, China

Received date: 2020-08-31

  Revised date: 2020-09-25

  Online published: 2020-10-30

Supported by

National Key Research and Development Program of China (2019YFA0405300); National Natural Science Foundation of China (11802324); National Numerical Windtunnel Project

摘要

高超声速激波/边界层干扰比超声速工况下具有更强的可压缩效应,再附之后会形成极高的局部力/热载荷,严重影响飞行器飞行安全。而激波/湍流边界层干扰区附近流动的三维特性使得流动更加复杂而难以预测。采用直接数值模拟对高超声速条件下的柱-裙激波/湍流边界层干扰进行了详细研究,特别是对Görtler涡结构对分离泡、物面压力和热流造成的展向差异开展了定性和定量分析。研究发现,干扰区附近的分离泡结构呈现出明显的三维效应,且Görtler涡展向分离位置截面的分离泡要明显小于再附位置,而这两个截面上分离泡的运动基本同步,没有明显的延迟或超前现象。物面压力和热流在展向出现显著的不均匀性,展向再附位置的平均压力和热流要比展向分离位置分别高13%和16.2%,脉动压力和热流比展向分离位置分别高28%和20%。截面流向速度特征正交分解结果显示两个位置上的能量都集中在剪切层附近,并且展向再附位置上低频模态占有更高的能量。在采用模态重构流场分析分离区面积发现,展向分离位置重构误差更小,而展向再附位置上的重构误差收敛更快。

本文引用格式

孙东 , 刘朋欣 , 沈鹏飞 , 童福林 , 郭启龙 . 马赫数6柱-裙激波/边界层干扰直接模拟[J]. 航空学报, 2021 , 42(12) : 124681 -124681 . DOI: 10.7527/S1000-6893.2020.24681

Abstract

The compressibility effect in the hypersonic shock wave/boundary layer interaction is much stronger than that in the supersonic interaction, and after the reattachment, the high local pressure and thermal load will form, thereby significantly influencing the flight safety of vehicles. The three-dimensionality of the shock wave/boundary layer interaction further complicates the flow structures, making them more difficult to predict. In this study, a direct numerical simulation on the hypersonic shock wave/boundary layer interaction is performed. The effects of G rtler vortices on the separation bubble, the wall pressure and the heat flux are investigated both qualitatively and quantitatively. The investigation results indicate that the separation bubble exhibits obvious three-dimensionality and the size of the bubble at the spanwise separation location is significantly smaller than that at the spanwise reattachment location. The bubbles at the two locations change synchronously. The pressure and the heat flux exhibit inhomogeneous distribution in the spanwise direction. The mean pressure and the heat flux at the spanwise reattachment location are 13% and 16.2% higher than those at the spanwise separation locations, respectively. The ratios for the fluctuations of pressure and heat flux are 28% and 20% higher, respectively. The proper orthogonal decomposition analyses indicate that the energy concentrates on the shear layer above the bubble and the low-order modes at the spanwise reattachment occupy more energy than those at the separation location.

参考文献

[1] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research-What next?[J]. AIAA Journal, 2001, 39:1517-1531.
[2] ANDREOPOULOS J, MUCK K. Some new aspects of the shock wave boundary layer interaction in compression ramp flows[C]//24th Aerospace Sciences Meeting. Reston:AIAA, 1986.
[3] ERENGIL M E, DOLLING D S. Physical causes of separation shock unsteadiness in shock-wave/boundary layer interactions:AIAA-1993-3134[R]. Reston:AIAA, 1993.
[4] BERESH S J, CLEMENS N T, DOLLING D S. Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness[J]. AIAA Journal, 2002, 40(12):2412-2422.
[5] CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1):469-492.
[6] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6):065113.
[7] PRIEBE S, MARTÍN M P. Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699:1-49.
[8] TOUBER E, SANDHAM N D. Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble[J]. Theoretical and Computational Fluid Dynamics, 2009, 23(2):79-107.
[9] GRILLI M, SCHMID P J, HICKEL S, et al. Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 700:16-28.
[10] BOOKEY P, WYCKHAM C, SMITS A. Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2005.
[11] TONG F L, LI X L, YUAN X X, et al. Incident shock wave and supersonic turbulent boundarylayer interactions near an expansion corner[J]. Computers & Fluids, 2020, 198:104385.
[12] 孙东, 刘朋欣, 童福林. 展向振荡对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(12):124054. SUN D, LIU P X, TONG F L. Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):124054(in Chinese).
[13] LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. LES of shock wave/turbulent boundary layer interaction[C]//High Performance Computing in Science and Engineering' 05, 2006.
[14] ZHELTOVODOV A. Some advances in research of shock wave turbulent boundary layer interactions[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006.
[15] GRILLI M, HICKEL S, ADAMS N A. Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp[J]. International Journal of Heat and Fluid Flow, 2013, 42:79-93.
[16] TONG F L, LI X L, DUAN Y H, et al. Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp[J]. Physics of Fluids, 2017, 29(12):125101.
[17] HELM C M, MARTIN P M. Görtler-like vortices in the LES data of a Mach 7 STBLI:AIAA-2017-0762[R]. Reston:AIAA, 2017.
[18] 童福林, 唐志共, 李新亮, 等. 压缩拐角激波与旁路转捩边界层干扰数值研究[J]. 航空学报, 2016, 37(12):3588-3604. TONG F L, TANG Z G, LI X L, et al. Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3588-3604(in Chinese).
[19] LI X L, FU D X, MA Y W, et al. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(9):1651-1658.
[20] TONG F L, TANG Z G, YU C P, et al. Numerical analysis of shock wave and supersonic turbulent boundary interaction between adiabatic and cold walls[J]. Journal of Turbulence, 2017, 18(6):569-588.
[21] TONG F L, YU C P, TANG Z G, et al. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner:Turning angle effects[J]. Computers & Fluids, 2017, 149:56-69.
[22] LI X L, LENG Y, HE Z W. Optimized sixth-order monotonicity-preserving scheme by nonlinear spectral analysis[J]. International Journal for Numerical Methods in Fluids, 2013, 73(6):560-577.
[23] PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 613:205-231.
[24] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6):065113.
[25] ELENA M, LACHARME J. Experimental study of a supersonic turbulent boundary layer using a laser Doppler anemometer[J]. Journal de Mecanique Theorique et Appliquee, 1988, 7:175-190.
[26] DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number[J]. Journal of Fluid Mechanics, 2011, 672:245-267.
[27] SUBBAREDDY P, CANDLER G. DNS of transition to turbulence in a hypersonic boundary layer[C]//41 st AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2011.
[28] WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4):879-889.
[29] SMITS A J, DUSSAUGE J P. Turbulent shear layers in supersonic flow[M]. New York:Springer-Verlag, 2006.
[30] SIMPSON R L. Turbulent boundary-layer separation[J]. Annual Review of Fluid Mechanics, 1989, 21(1):205-232.
[31] SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3):561-571.
文章导航

/