论文

金属微滴水平喷射关键参数调控机制及试验

  • 黄杰光 ,
  • 齐乐华 ,
  • 罗俊
展开
  • 西北工业大学 机电学院, 西安 710072

收稿日期: 2020-08-13

  修回日期: 2020-09-15

  网络出版日期: 2020-10-30

基金资助

国家自然科学基金(51772245);中央高校基本科研业务费专项资金(3102019ZX049)

Experimental research and regulation mechanism of critical parameters on horizontal ejection of metal droplets

  • HUANG Jieguang ,
  • QI Lehua ,
  • LUO Jun
Expand
  • School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-08-13

  Revised date: 2020-09-15

  Online published: 2020-10-30

Supported by

National Natural Science Foundation of China (51772245); The Fundamental Research Funds for the Central Universities (3102019ZX049)

摘要

均匀金属微滴喷射3D打印技术是一种极具应用前景的空间金属增材制造技术,明晰其重力敏感度是实现该技术空间化应用的前提。在地基条件下,将熔滴喷射沉积方向翻转至水平状态是直观反映其打印过程重力效应的有效方法。针对熔滴水平稳定喷射调控的难题,建立了熔滴水平喷射流体力学模型及压电激振动力学模型,通过试验,探究了熔滴水平喷射不稳定形成机制,明晰了不同喷射行为下的激振特性,揭示了熔滴水平稳定喷射调控规律。结果表明:压电模块驱动信号(脉宽、幅值)对激振杆振动特性影响极为显著,激振杆行程随幅值或脉宽的增加呈现出先增加后减小的变化规律;通过改变激振杆振动特性可调控熔滴直径、初始喷射速度及喷射稳定性,熔滴直径随幅值增大而减小,但受脉宽影响不大,而喷射速度与幅值及脉宽均正相关。基于此,试验得到了尺寸均匀的金属熔滴,并水平沉积打印出与设计模型一致的结构特征。

本文引用格式

黄杰光 , 齐乐华 , 罗俊 . 金属微滴水平喷射关键参数调控机制及试验[J]. 航空学报, 2021 , 42(10) : 524637 -524637 . DOI: 10.7527/S1000-6893.2020.24637

Abstract

Uniform metal droplet ejection 3D printing technology is a promising space-based metal Additive Manufacturing (AM) technology. Understanding the gravity sensitivity is the premise to realize its application in space. Under ground condition, it is able to intuitively exhibit the gravity effects on printing processes by overturning the ejection and deposition direction to a horizontal state. Here, toward the challenge of realizing the stable horizontal ejection of metal droplets, a fluid dynamics model and a kinetic model of piezoelectric vibrator during the process of droplet horizontal ejection are established. The mechanisms on unstable ejection are experimentally investigated, the vibration characteristics of different ejection behaviors are ascertained, and the regulation law of stable horizontal ejection is unveiled. The results show that the vibration characteristic of the vibrator rod depends on the drive signal (pulse duration, amplitude) of piezoelectric module. With the growth of the amplitude or pulse duration, the vibrator travel increases at first, but then decrease. In addition, the diameter, initial velocity, and injection stability of the droplet can be effectively tailored by modulating the vibration characteristic of the vibrator rod. The droplet diameter decreases with the increase of the amplitude, and the droplet velocity is both positively correlated with the amplitude and pulse duration. Based on these findings, uniform metal droplets are experimentally obtained, and structures that agreed with the designed models are printed through droplets horizontal deposition.

参考文献

[1] 高航, 李世宠, 付有志, 等. 金属增材制造格栅零件磨粒流抛光[J]. 航空学报, 2017, 38(10):421210. GAO H, LI S C, FU Y Z, et al. Abrasive flow machining of additively manufactured metal grilling parts[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):421210(in Chinese).
[2] 田小永, 李涤尘, 卢秉恒. 空间3D打印技术现状与前景[J]. 载人航天, 2016, 22(4):471-476. TIAN X Y, LI D C, LU B H. Status and prospect of 3D printing technology in space[J]. Manned Spaceflight, 2016, 22(4):471-476(in Chinese).
[3] 王功, 赵伟, 刘亦飞, 等. 太空制造技术发展现状与展望[J]. 中国科学:物理学力学天文学, 2020, 50(4):95-105. WANG G, ZHAO W, LIU Y F, et al. Review of space manufacturing technique and developments[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50(4):95-105(in Chinese).
[4] 刘亦飞, 李亮, 王功, 等. 空间金属增材制造技术应用[J]. 中国空间科学学报, 2018, 38(3):380-385. LIU Y F, LI L, WANG G, et al. Application of metal additive manufacturing technology for space[J]. Chinese Journal of Space Science, 2018, 38(3):380-385(in Chinese).
[5] SNYDER M, DUNN J, GONZALEZ E. The effects of microgravity on extrusion based additive manufacturing[C]//AIAA SPACE 2013 Conference and Exposition. Reston:AIAA, 2013:5439.
[6] HAFLEY R, TAMINGER K, BIRD R. Electron beam freeform fabrication in the space environment[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2007:1154.
[7] 曾如川, 葛一凡, 魏松, 等. 太空环境下电子束原位制造技术[J]. 航空学报, 2018, 39(增刊1):722227. ZENG R C, GE Y F, WEI S, et al. Electron beam in situ fabrication in space[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(S1):722227(in Chinese).
[8] ZOCCA A, LÜCHTENBORG J, MVHLER T, et al. Enabling the 3D printing of metal components in μ-gravity[J]. Advanced Materials Technologies, 2019, 4(10):1900506.
[9] HUANG J G, QI L H, LUO J, et al. Suppression of gravity effects on metal droplet deposition manufacturing by an anti-gravity electric field[J]. International Journal of Machine Tools and Manufacture, 2020, 148:103474.
[10] HUANG J G, QI L H, LUO J, et al. Insights into the impact and solidification of metal droplets in ground-based investigation of droplet deposition 3D printing under microgravity[J]. Applied Thermal Engineering, 2021, 183:116176.
[11] CHUN J H, PASSOW C H. Study of spray forming using uniform droplet sprays[J]. Advances in Powder Metallurgy, 1992, 1:377-391.
[12] ORME M. A novel technique of rapid solidification net-form materials synthesis[J]. Journal of Materials Engineering and Performance, 1993, 2(3):399-405.
[13] LIU Q B, ORME M. High precision solder droplet printing technology and the state-of-the-art[J]. Journal of Materials Processing Technology, 2001, 115(3):271-283.
[14] CHAO Y P, QI L H, XIAO Y, et al. Manufacturing of micro thin-walled metal parts by micro-droplet deposition[J]. Journal of Materials Processing Technology, 2012, 212(2):484-491.
[15] ZENOU M, SA'AR A, KOTLER Z. Laser transfer of metals and metal alloys for digital microfabrication of 3D objects[J]. Small, 2015, 11(33):4082-4089.
[16] LUO J, POHL R, QI L H, et al. Printing functional 3D microdevices by laser-induced forward transfer[J]. Small, 2017, 13(9):1602553.
[17] FANG M, CHANDRA S, PARK C B. Building three-dimensional objects by deposition of molten metal droplets[J]. Rapid Prototyping Journal, 2008, 14(1):44-52.
[18] 陈从平, 张涛, 丁汉. 考虑残留量的针头-基板间微量胶液接触转移过程数值模拟[J]. 机械工程学报, 2014, 50(14):197-203. CHEN C P, ZHANG T, DING H. Numerical simulation of micro-fluid contact transfer process by considering pinhead epoxy residue[J]. Journal of Mechanical Engineering, 2014, 50(14):197-203(in Chinese).
[19] FULLER S B, WILHELM E J, JACOBSON J M. Ink-jet printed nanoparticle microelectromechanical systems[J]. Journal of Microelectromechanical Systems, 2002, 11(1):54-60.
[20] FISCHER A C, MÄNTYSALO M, NIKLAUS F. Inkjet printing, laser-based micromachining and micro 3D printing technologies for MEMS[M]//Handbook of Silicon Based MEMS Materials and Technologies. Amsterdam:Elsevier, 2015:550-564.
[21] NGUYEN-THI H, REINHART G, BROWNE D J, et al. In situ X-ray studies of directional solidification of metal alloys in microgravity conditions[C]//23rd ESA Symposium on Rocket and Balloon Programmes and Related Research. Paris:ESA, 2017.
[22] COOPER K G, GRIFFIN M R. Microgravity manufacturing via fused deposition:NASA/TM-2003-212636[R]. Huntsville:NASA Marshall Space Flight Center, 2003.
[23] YIM P. The role of surface oxidation in the break-up of laminar liquid metal jets[D]. Cambridge:Massachusetts Institute of Technology, 1996.
[24] ARTEM'EV B V, KOCHETOV S G. Capillary breakup of a liquid-metal jet in an oxidizing medium[J]. Journal of Engineering Physics, 1991, 60(4):425-429.
[25] MA M, WEI X F, SHU X Y, et al. Producing solder droplets using piezoelectric membrane-piston-based jetting technology[J]. Journal of Materials Processing Technology, 2019, 263:233-240.
[26] ZHANG D C, QI L H, LUO J, et al. Direct fabrication of unsupported inclined aluminum Pillars based on uniform micro droplets deposition[J]. International Journal of Machine Tools and Manufacture, 2017, 116:18-24.
[27] 丁祖荣. 工程流体力学(上册)[M]. 北京:机械工业出版社, 2013:208-209. DING Z R. Engineering fluid mechanics (Volume I)[M]. Beijing:China Machine Press, 2013:208-209(in Chinese).
[28] 杨长安. 节流孔流场特性分析及液压泵减振槽研究[D]. 兰州:兰州理工大学, 2009:17-19. YANG C A. Analysis of flow field characteristic of orifice and study on damping grooves in hydraulic pump valve plate[D]. Lanzhou:Lanzhou University of Technology, 2009:17-19(in Chinese).
[29] CHENG S, CHANDRA S. A pneumatic droplet-on-demand generator[J]. Experiments in Fluids, 2003, 34(6):755-762.
文章导航

/