综述

机场探鸟雷达技术发展与应用综述

  • 陈唯实 ,
  • 黄毅峰 ,
  • 陈小龙 ,
  • 卢贤锋 ,
  • 张洁
展开
  • 1. 中国民航科学技术研究院, 北京 100028;
    2. 海军航空大学, 烟台 264001

收稿日期: 2020-09-16

  修回日期: 2020-10-26

  网络出版日期: 2020-10-23

基金资助

国家自然科学基金委员会-中国民用航空局民航联合研究基金(U2133216,U1933135)

Development and applications of airport avian radar: Review

  • CHEN Weishi ,
  • HUANG Yifeng ,
  • CHEN Xiaolong ,
  • LU Xianfeng ,
  • ZHANG Jie
Expand
  • 1. China Academy of Civil Aviation Science and Technology, Beijing 100028, China;
    2. Naval Aviation University, Yantai 264001, China

Received date: 2020-09-16

  Revised date: 2020-10-26

  Online published: 2020-10-23

Supported by

Joint fund of the National Natural Science Foundation of China(NSFC); Civil Aviation Administration of China(CAAC)(U2133216, U1933135)

摘要

探鸟雷达已成为机场鸟击防范中重要的鸟情观测工具。首先,在介绍探鸟雷达技术起源的基础上,分析了目标回波幅度、飞行速度、飞行高度、轨迹特征、微动特征等飞鸟目标特性。然后,介绍了Merlin雷达、Accipiter雷达、Robin雷达以及Aveillant雷达等四种典型的机场探鸟雷达系统及国内的探鸟雷达技术研究现状,并分析了天线、雷达波形、目标检测与跟踪、目标识别与分类等雷达关键技术,进而对典型探鸟雷达系统的性能指标做对比分析。最后,从雷达与光电技术融合、探鸟与驱鸟联动、鸟情信息分析等方面讨论了探鸟雷达的应用情况,并做出结论与展望。

本文引用格式

陈唯实 , 黄毅峰 , 陈小龙 , 卢贤锋 , 张洁 . 机场探鸟雷达技术发展与应用综述[J]. 航空学报, 2022 , 43(1) : 24758 -024758 . DOI: 10.7527/S1000-6893.2020.24758

Abstract

Avian radar has become an important bird situation observation tool in airport bird strike avoidance. The origin of avian radar technology is first introduced, followed by analysis of the target characteristics of flying birds in terms of the target echo amplitude, flight speed, flight height, trajectory characteristics and micro-Doppler characteristics. Four typical airport avian radar systems, including Merlin radar, Accipiter radar, Robin radar and Aveillant radar, and the research status of the domestic avian radar technology are then introduced. Key radar technologies such as antenna, radar waveform, target detection and tracking, target recognition and classification are analyzed, and the performance of typical avian radar systems compared. In addition, the applications of avian radar are discussed with respect to the fusion of radar and photoelectric technologies, the linkage of bird detection and repellent, and the bird information analysis. Conclusions are finally drawn and prospects are made.

参考文献

[1] FAA. Advisory circular on reporting wildlife aircraft strikes: 150/5200-32B[R]. Washington, D.C.: FAA, 2013.
[2] NOHARA T J. Could avian radar have prevented US Airways flight 1549’s bird strike?[C]//11th Joint Meeting of Bird Strike Committee USA & Canada, 2010
[3] 中国民用航空局. 关于2019年度运输机场鸟击防范工作情况的通报: 局发明电〔2020〕567号[P]. 2020-03-06. CAAC. Notice on bird strike prevention work of transport airport in 2019: No.567, 2020[P]. 2020-03-06(in Chinese).
[4] 陈唯实, 张洁, 卢贤锋. 基于探鸟雷达数据的机场鸟情分析[J]. 中国民用航空, 2020(1): 43-45. CHEN W S, ZHANG J, LU X F. Airport bird situation analysis based on avian radar data[J]. China Civil Aviation, 2020(1): 43-45(in Chinese).
[5] 陈唯实, 李敬. 雷达探鸟技术发展与应用综述[J]. 现代雷达, 2017, 39(2): 7-17. CHEN W S, LI J. Review on development and applications of avian radar technology[J]. Modern Radar, 2017, 39(2): 7-17(in Chinese).
[6] NOHARA T J, WEBER P, UNKRAINEC A, et al. An overview of avian radar developments-past, present and future[C]//2007 Bird Strike Committee USA/Canada, 9th Annual Meeting, 2007.
[7] 陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11): 30-38. CHEN X L, GUAN J, HUANG Y, et al. Radar low-observable target detection[J]. Science & Technology Review, 2017, 35(11): 30-38(in Chinese).
[8] BEASON R C, NOHARA T J, WEBER P. Beware the Boojum: Caveats and strengths of avian radar[J]. Human-Wildlife Interactions, 2013, 7(1): 16-46
[9] BURGER A E, CHATWIN T A, CULLEN S A, et al. Application of radar surveys in the management of nesting habitat of Marbled Murrelets Brachyramphus marmoratus[J]. Marine Ornithology, 2004, 32(1): 1-11.
[10] GAUTHREAUX S A. The flight behavior of migrating birds in changing wind fields: Radar and visual analyses[J]. Integrative and Comparative Biology, 2015, 31(1): 187-204.
[11] HARMATA ALAN R, PODRUZNY KEVIN M, ZELENAK JAMES R, et al. Using marine surveillance radar to study bird movements and impact assessment[J]. Wildlife Society Bulletin, 1999, 27(1): 44-52.
[12] 陈唯实, 黄毅峰, 卢贤锋, 等. 基于气象雷达的鸟类迁徙监视预警[J]. 中国民用航空, 2020(7): 48-51. CHEN W S, HUANG Y F, LU X F, et al. Surveillance and early warning of bird migration based on weather radar[J]. China Civil Aviation, 2020(7): 48-51(in Chinese).
[13] 宁焕生, 刘文明, 李敬, 等. 航空鸟击雷达鸟情探测研究[J]. 电子学报, 2006, 34(12): 2232-2237. NING H S, LIU W M, LI J, et al. Research on radar avian detection for aviation[J]. Acta Electronica Sinica, 2006, 34(12): 2232-2237(in Chinese).
[14] 陈唯实, 宁焕生, 李敬, 等. 基于两种扫描方式的雷达探鸟系统[J]. 北京航空航天大学学报, 2009, 35(3): 380-383. CHEN W S, NING H S, LI J, et al. Avian radar system based on two scanning modes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(3): 380-383(in Chinese).
[15] CHEN W S, NING H, JIAN L, et al. Flight path detection of bird targets in radar images[J]. Chinese Journal of Electronics, 2009, 18(1): 192-194.
[16] HUANSHENG N, WEISHI C, JING L. Radar target tracking in cluttered environment based on particle filtering[J]. The Aeronautical Journal, 2010, 114(1155): 309-314.
[17] NING H S, CHEN W S, MAO X, et al. Bird-aircraft strike avoidance radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2010, 25(1): 19-28.
[18] CHEN W S, NING H S, LI J. Flying bird detection and hazard assessment for avian radar system[J]. Journal of Aerospace Engineering, 2012, 25(2): 246-255.
[19] 刘玉琪, 易建新, 万显荣, 等. 数字电视外辐射源雷达多旋翼无人机微多普勒效应实验研究[J]. 雷达学报, 2018, 7(5): 585-592. LIU Y Q, YI J X, WAN X R, et al. Experimental research on micro-Doppler effect of multi-rotor drone with digital television based passive radar[J]. Journal of Radars, 2018, 7(5): 585-592(in Chinese).
[20] 陈宏昆, 察豪, 刘峰. 鸟类目标微多普勒分析及参数估计[J]. 电讯技术, 2019, 59(4): 431-436. CHEN H K, CHA H, LIU F. Micro-Doppler analysis and parameter estimation of bird target[J]. Telecommunication Engineering, 2019, 59(4): 431-436(in Chinese).
[21] 王胜国, 孔繁, 吴霞飞, 等. 一种基于接收相参的鸟类目标探测雷达[J]. 电子科技, 2015, 28(7): 8-11. WANG S G, KONG F, WU X F, et al. An avian target detection radar based on coherent-on-receive[J]. Electronic Science and Technology, 2015, 28(7): 8-11(in Chinese).
[22] 陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9(5): 803-827. CHEN X L, CHEN W S, RAO Y H, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803-827(in Chinese).
[23] WALTER G. Radar ornithology[J]. The Auk, 1969, 86(3): 578-579.
[24] EDWARDS J, HOUGHTON E W. Radar echoing area polar diagrams of birds[J]. Nature, 1959, 184(4692): 1059.
[25] NOHARA T J, BEASON R C, WEBER P. Using radar cross-section to enhance situational awareness tools for airport avian radars[J]. Human-Wildlife Interactions, 2011, 5(2): 210-217.
[26] DYBDAL R B. Radar cross section measurements[J]. Proceedings of the IEEE, 1987, 75(4): 498-516.
[27] MERRILL I S. Introduction to radar systems[M]. 3rd ed. New York: McGraw-Hill Companies, Inc. 2001: 337-340.
[28] BRIGGS J N. Target detection by marine radar[M]. London: Institution of Engineering and Technology, 2004.
[29] GREEN M, ALERSTAM T. Flight speeds and climb rates of Brent Geese: Mass-dependent differences between spring and autumn migration[J]. Journal of Avian Biology, 2000, 31(2): 215-225.
[30] BRUDERER B, BOLDT A. Flight characteristics of birds:I.radar measurements of speeds[J]. Ibis, 2001, 143(2): 178-204.
[31] ALERSTAM T, ROSÉN M, BÄCKMAN J, et al. Flight speeds among bird species: Allometric and phylogenetic effects[J]. PLoS Biology, 2007, 5(8): e197.
[32] NOHARA T J, WEBER P, PREMJI A, et al. Affordable avian radar surveillance systems for natural resource management and BASH applications[C]//IEEE International Radar Conference. Piscataway: IEEE Press, 2005: 10-15.
[33] BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1): 5-18.
[34] BEASON R C, WEBER P, NOHARA T J. Color vision as a model for precise altitude determination using avian radar[C]//Proceedings of the International Bird Strike Committee, 2010.
[35] 胡程, 李卫东, 王锐. 基于全极化的相参雷达迁飞昆虫观测[J]. 信号处理, 2019, 35(6): 951-957. HU C, LI W D, WANG R. Fully polarimetric coherent radar for migratory insect observation[J]. Journal of Signal Processing, 2019, 35(6): 951-957(in Chinese).
[36] 陈唯实. 基于时域特性的非相参雷达目标检测与跟踪[J]. 系统工程与电子技术, 2016, 38(8): 1800-1807. CHEN W S. Incoherent radar target detection and tracking with temporal features[J]. Systems Engineering and Electronics, 2016, 38(8): 1800-1807(in Chinese).
[37] 张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531-547. ZHANG Q, HU J, LUO Y, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531-547(in Chinese).
[38] JAHANGIR M, BAKER C J, OSWALD G A. Doppler characteristics of micro-drones with L-Band multibeam staring radar[C]//2017 IEEE Radar Conference(RadarConf). Piscataway: IEEE Press, 2017: 1052-1057.
[39] 陈小龙, 关键, 何友. 微多普勒理论在海面目标检测中的应用及展望[J]. 雷达学报, 2013, 2(1): 123-134. CHEN X L, GUAN J, HE Y. Applications and prospect of micro-motion theory in the detection of sea surface target[J]. Journal of Radars, 2013, 2(1): 123-134(in Chinese).
[40] CLEMENTE C. The micro-Doppler effect in radar[J]. The Aeronautical Journal, 2012, 116(1176): 221.
[41] RAHMAN S, ROBERTSON D A. Radar micro-Doppler signatures of drones and birds at K-band and W-band[J]. Scientific Reports, 2018, 8: 17396.
[42] ANDERSON R. Avian Radar Systems[EB/OL].[2020-08-31]. http://www.detect-inc.com/downloads.
[43] WEBER P, NOHARA T J, GAUTHREAUX S JR. Affordable, real-time, 3-D avian radar networks for centralized North American bird advisory systems[C]//Bird Strike Committee Proceedings, 2005.
[44] FAA. Advisory circular on airport avian radar systems: 150/5220-25[R]. Washington, D.C.: FAA, 2010.
[45] HOFFMANN F, RITCHIE M, FIORANELLI F, et al. Micro-Doppler based detection and tracking of UAVs with multistatic radar[C]//2016 IEEE Radar Conference. Piscataway: IEEE Press, 2016: 1-6.
[46] JAHANGIR M, BAKER C J, OSWALD G A. Doppler characteristics of micro-drones with L-Band multibeam staring radar[C]//2017 IEEE Radar Conference. Piscataway: IEEE Press, 2017: 1052-1057.
[47] 陈唯实, 万健, 李敬. 基于机场探鸟雷达数据的鸟击风险评估[J]. 北京航空航天大学学报, 2013, 39(11): 1431-1436. CHEN W S, WAN J, LI J. Bird strike risk assessment with airport avian radar data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11): 1431-1436(in Chinese).
[48] CHEN W S. Spatial and temporal features selection for low-altitude target detection[J]. Aerospace Science and Technology, 2015, 40: 171-180.
[49] 陈唯实, 黄毅峰, 陈小龙, 等. 机场净空区飞鸟与非合作无人机目标识别[J]. 民航学报, 2020, 4(3): 27-33. CHEN W S, HUANG Y F, CHEN X L, et al. Recognition methods of flying bird and non-cooperative drone targets in airport clearance area[J]. Journal of Civil Aviation, 2020, 4(3): 27-33(in Chinese).
[50] ROBIN Systems & Services[EB/OL].[2020-08-31]. http://www.robinradar.com/downloads/.
[51] 赵春雨. 超宽角扫描多波束透镜天线关键技术研究[D]. 成都: 电子科技大学, 2020. ZHAO C Y. Studies on key techniques of ultra-wide-angle scanning multi-beam lens antennas[D]. Chengdu: University of Electronic Science and Technology of China, 2020(in Chinese).
[52] 徐飞. 基于FPGA的一种通用DBF运算单元实现[J]. 火控雷达技术, 2020, 49(2): 66-69. XU F. Research on the implementation of extensible DBF radar signal processor based on FPGA[J]. Fire Control Radar Technology, 2020, 49(2): 66-69(in Chinese).
[53] 潘忠堂. 新型船用导航雷达结构总体设计[J]. 电子机械工程, 2019, 35(5): 17-20. PAN Z T. Structural design of new marine navigation radar[J]. Electro-Mechanical Engineering, 2019, 35(5): 17-20(in Chinese).
[54] KHAN M S, IFTIKHAR A, SHUBAIR R M, et al. A four element, planar, compact UWB MIMO antenna with WLAN band rejection capabilities[J]. Microwave and Optical Technology Letters, 2020, 62(10): 3124-3131.
[55] 李慧, 赵永波, 程增飞. 基于线性调频时宽的MIMO雷达正交波形设计[J]. 电子与信息学报, 2018, 40(5): 1151-1158. LI H, ZHAO Y B, CHENG Z F. MIMO radar orthogonal waveform set design based on chirp durations[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1151-1158(in Chinese).
[56] 崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8(5): 537-557. CUI G L, YU X X, YANG J, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537-557(in Chinese).
[57] 纠博, 刘宏伟, 胡利平, 等. 针对目标识别的波形优化设计方法[J]. 电子与信息学报, 2009, 31(11): 2585-2590. JIU B, LIU H W, HU L P, et al. A method of waveform design for the recognition of radar targets[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2585-2590(in Chinese).
[58] 陈唯实, 闫军, 李敬. 基于Rao-Blackwellized蒙特卡罗数据关联的检测跟踪联合优化[J]. 北京航空航天大学学报, 2018, 44(4): 700-708. CHEN W S, YAN J, LI J. Joint optimization of detection and tracking with Rao-Blackwellized Monte Carlo data association[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 700-708(in Chinese).
[59] 陈唯实, 宁焕生, 李敬, 等. 基于鸟类目标散射特性分析的雷达探鸟实验[J]. 航空学报, 2009, 30(7): 1312-1318. CHEN W S, NING H S, LI J, et al. Avian radar detection experiment based on analysis of bird targets' scattering characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7): 1312-1318(in Chinese).
[60] CHEN W S, NING H S. Edge clutter rejection for PPI radar images[J]. Aircraft Engineering and Aerospace Technology, 2013, 86(1): 19-25.
[61] 陈唯实, 李敬. 基于空域特性的低空空域雷达目标检测[J]. 航空学报, 2015, 36(9): 3060-3068. CHEN W S, LI J. Radar target detection in low-altitude airspace with spatial features[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3060-3068(in Chinese).
[62] PANDA M, NGODUY D, VU H L. Multiple model stochastic filtering for traffic density estimation on urban arterials[J]. Transportation Research Part B: Methodological, 2019, 126: 280-306.
[63] 陈唯实, 黄毅峰, 卢贤锋, 等. 基于探鸟雷达的机场周边鸟类目标数量估计[J]. 北京航空航天大学学报, 2021, 47(8): 1533-1542. CHEN W S, HUANG Y F, LU X F, et al. Estimating number of birds around airport based on avian radar[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1533-1542(in Chinese).
[64] 龙腾. 新体制民用雷达系统理论与关键技术[J]. 光学与光电技术, 2019, 17(6): 6-10. LONG T. Novel civilian radar system theory and key technologies[J]. Optics & Optoelectronic Technology, 2019, 17(6): 6-10(in Chinese).
[65] 陈唯实, 黄毅峰, 卢贤锋. 多传感器融合的无人机探测技术应用综述[J]. 现代雷达, 2020, 42(6): 15-29. CHEN W S, HUANG Y F, LU X F. Survey on application of multi-sensor fusion in UAV detection technology[J]. Modern Radar, 2020, 42(6): 15-29(in Chinese).
[66] 陈唯实, 刘佳, 陈小龙, 等. 基于运动模型的低空非合作无人机目标识别[J]. 北京航空航天大学学报, 2019, 45(4): 687-694. CHEN W S, LIU J, CHEN X L, et al. Non-cooperative UAV target recognition in low-altitude airspace based on motion model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 687-694(in Chinese).
[67] SINGH A K, KIM Y H. Automatic measurement of blade length and rotation rate of drone using W-band micro-Doppler radar[J]. IEEE Sensors Journal, 2018, 18(5): 1895-1902.
[68] 宋晨, 周良将, 吴一戎, 等. 基于自相关-倒谱联合分析的无人机旋翼转动频率估计方法[J]. 电子与信息学报, 2019, 41(2): 255-261. SONG C, ZHOU L J, WU Y R, et al. An estimation method of rotation frequency of unmanned aerial vehicle based on auto-correlation and cepstrum[J]. Journal of Electronics & Information Technology, 2019, 41(2): 255-261(in Chinese).
[69] CHEN X L, GUAN J, LIU N B, et al. Maneuvering target detection via radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 939-953.
[70] CHEN X L, GUAN J, CHEN W S, et al. Sparse long-time coherent integration-based detection method for radar low-observable manoeuvring target[J]. IET Radar, Sonar & Navigation, 2020, 14(4): 538-546.
[71] CHEN X L, GUAN J, WANG G Q, et al. Fast and refined processing of radar maneuvering target based on hierarchical detection via sparse fractional representation[J]. IEEE Access, 2019, 7: 149878-149889.
[72] TORVIK B, OLSEN K E, GRIFFITHS H. Classification of birds and UAVs based on radar polarimetry[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9): 1305-1309.
[73] SAQIB M, KHAN S D, SHARMA N, et al. A study on detecting drones using deep convolutional neural networks[C]//201714th IEEE International Conference on Advanced Video and Signal Based Surveillance(AVSS). Piscataway: IEEE Press, 2017: 1-5.
[74] CRAYE C, ARDJOUNE S. Spatio-temporal semantic segmentation for drone detection[C]//2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance(AVSS). Piscataway: IEEE Press, 2019: 1-5.
[75] MAGOULIANITIS V, ATALOGLOU D, DIMOU A, et al. Does deep super-resolution enhance UAV detection?[C]//2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance(AVSS). Piscataway: IEEE Press, 2019: 1-6.
[76] AKER C, KALKAN S. Using deep networks for drone detection[C]//2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance(AVSS). Piscataway: IEEE Press, 2017: 1-6.
[77] ROZANTSEV A, LEPETIT V, FUA P. Detecting flying objects using a single moving camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(5): 879-892.
[78] 赵超. 基于物联网的机场驱鸟系统的研制[D]. 济南: 山东师范大学, 2014. ZHAO C. Develop of intelligent drive away birds for airport system based on Internet of Things[D]. Jinan: Shandong Normal University, 2014(in Chinese).
[79] 陈唯实, 闫军, 张洁, 等. 基于支持向量机的机场智能驱鸟决策[J]. 北京航空航天大学学报, 2018, 44(7): 1547-1553. CHEN W S, YAN J, ZHANG J, et al. Intelligent decision making for airport bird-repelling with support vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1547-1553(in Chinese).
文章导航

/