流体力学与飞行力学

三角翼机翼摇滚主动控制多学科耦合数值模拟

  • 杨起 ,
  • 刘伟 ,
  • 杨小亮 ,
  • 李昊
展开
  • 国防科技大学 空天科学学院, 长沙 410072

收稿日期: 2020-08-31

  修回日期: 2020-09-20

  网络出版日期: 2020-10-23

基金资助

国家重大项目(GJXM92579)

Multidisplinary interactions numerical simulation for active control of delta wing rock

  • YANG Qi ,
  • LIU Wei ,
  • YANG Xiaoliang ,
  • LI Hao
Expand
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410072, China

Received date: 2020-08-31

  Revised date: 2020-09-20

  Online published: 2020-10-23

Supported by

National Key Project (GJXM92579)

摘要

细长机身和大后掠机翼气动构型的飞行器大攻角飞行时,由于缺少横向阻尼,易发生以绕体轴滚转振动为主的摇滚运动,飞行安全受到严重威胁。针对三角翼摇滚问题,采用动网格技术,建立了气动、运动和控制多学科耦合的数值模拟方法。通过耦合非定常Navier-Stokes方程、刚体运动方程和经典控制律,采用控制面差动偏转的方式对三角翼摇滚主动控制过程进行了数值模拟,并分析了不同控制状态下三角翼受控滚转的运动特性。在来流马赫数为0.3的条件下,实现了80°后掠三角翼摇滚现象的有效控制。

本文引用格式

杨起 , 刘伟 , 杨小亮 , 李昊 . 三角翼机翼摇滚主动控制多学科耦合数值模拟[J]. 航空学报, 2021 , 42(12) : 124685 -124685 . DOI: 10.7527/S1000-6893.2020.24685

Abstract

Modern aircraft with delta wings and small thickness ratios of inner fuselages often fly at high angles of attack, resulting in wing rock motion due to the lack of lateral damp, which seriously threaten the flight safety. A multidisciplinary numerical simulation method has been established to control the wing rock motion, integrating aerodynamics, flight mechanics and flight control characteristics. The active control progress of delta wing with trailing-edge control surfaces is investigated by solving unsteady Navier-Stokes equations on moving grids and rigid body motion functions with one degree of freedom under classical control laws. Furthermore, the kinetic characteristics of the controlled delta wing in different control states are analyzed. The numerical results indicate that the wing rock motion of the 80° sweep delta wing has been controlled effectively with the inlet Mach number of 0.3.

参考文献

[1] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3):185-248.
[2] 刘伟, 杨小亮, 张涵信, 等. 大攻角运动时的机翼摇滚问题研究综述[J]. 力学进展, 2008, 38(2):214-228. LIU W, YANG X L, ZHANG H X, et al. A review on investigations of wing rock problems under high angles of attack[J]. Advances in Mechanics, 2008, 38(2):214-228(in Chinese).
[3] LEE K W, SINGH S N. Chebyshev neural noncertainty-equivalent adaptive control of wing rock of slender delta wings[C]//AIAA Guidance, Navigation, and Control (GNC) Conference. Reston:AIAA, 2013.
[4] CHANDAR T S, TALOLE S E. Improving the performance of UDE-based controller using a new filter design[J]. Nonlinear Dynamics, 2014, 77(3):753-768.
[5] MALEKZADEH M, SADATI J, ALIZADEH M. Adaptive PID controller design for wing rock suppression using self-recurrent wavelet neural network identifier[J]. Evolving Systems, 2016, 7(4):267-275.
[6] CUMMINGS R M, MORTON S A, SIEGEL S G. Computational simulation and experimental measurements for a delta wing with periodic suction and blowing[J]. Journal of Aircraft, 2003, 40(5):923-931.
[7] RIOU J, GARNIER E, BASDEVANT C. Blowing effects on the separated flow over a moderately swept missile fin[J]. AIAA Journal, 2011, 49(2):269-278.
[8] KANDIL O, MENZIES M, KANDIL O, et al. Effective control of computationally simulated wing rock in subsonic flow[C]//35th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1997.
[9] HELIN H E, WATRY C W. Effects of trailing-edge jet entrainment on delta wing vortices[J]. AIAA Journal, 1994, 32(4):802-804.
[10] NAWROCKI D. Differential and vectored trailing edge jet control of delta wing vortices[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1995.
[11] 王晋军, 苗福友, 钮珍南, 等. 后缘喷流对三角翼前缘涡的影响[J]. 空气动力学学报, 2000, 18(2):125-131. WANG J J, MIAO F Y, NIU Z N, et al. The effects of trailing edge jets on the vortex breakdown of a delta wing[J]. Acta Aerodynamica Sinica, 2000, 18(2):125-131(in Chinese).
[12] 陈宇, 阎超. 后缘喷流对三角翼前缘涡影响的数值模拟[J]. 北京航空航天大学学报, 2007, 33(10):1170-1173. CHEN Y, YAN C. Numerical simulation to effects of trailing edge jet on delta wing vortices[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10):1170-1173(in Chinese).
[13] 赵海洋. 返回舱动态稳定性物理机理分析及被动/主动控制方法研究[D]. 长沙:国防科学技术大学, 2007. ZHAO H Y. Study on the mechanism and passive/active control methods of the dynamic stability of the reentry capsules[D]. Changsha:National University of Defense Technology, 2007(in Chinese).
[14] GURSUL I, WANG Z, VARDAKI E. Review of flow control mechanisms of leading-edge vortices[J]. Progress in Aerospace Sciences, 2007, 43(7-8):246-270.
[15] LEE E M, BATINA J T. Conical Euler simulation and active suppression of delta wing rocking motion:NASA-TM-102683[R]. Washington,D.C.:NASA; 1990.
[16] WALTON J, KATZ J. Reduction of wing rock amplitudes using leading-edge vortex manipulations[C]//30th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1992.
[17] DENG Q, GURSUL I. Vortex breakdown over a delta wing with oscillating leading edge flaps[J]. Experiments in Fluids, 1997, 23(4):347-352.
[18] BOELENS O J, PRANANTA B, SOEMARWOTO B, et al. Towards an aero-servo-elastic simulation capability for high-performance fighter aircraft:RTO-MP-AVT-2005[R]. National Aerospace Laboratory, 2019.
[19] SCHVTTE A, EINARSSON G, RAICHLE A, et al. Numerical simulation of maneuvering aircraft by aerodynamic, flight mechanics and structural mechanics coupling[J]. Journal of Aircraft, 2009, 46(1):53-64.
[20] TOMAC M, RIZZI A, JIRÁSEK A. Computational fluid dynamics predictions of control-surface effects for F-16XL aircraft[J]. Journal of Aircraft, 2016, 54(2):395-408.
[21] BADRYA C, SRIDHARAN A, BAEDER J D, et al. Multi-fidelity coupled trim analysis of a flapping-wing micro air vehicle flight[J]. Journal of Aircraft, 2017, 54(5):1614-1630.
[22] CARRIÓN M, BIAVA M, BARAKOS G N, et al. Study of hybrid air vehicle stability using computational fluid dynamics[J]. Journal of Aircraft, 2016, 54(4):1328-1339.
[23] 李喜乐, 杨永. 带副翼偏转的三角翼自由滚转运动数值模拟[J]. 航空学报, 2012, 33(3):453-462. LI X L, YANG Y. Numerical simulation of the free rolling motion of a delta wing configuration with aileron deflection[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):453-462(in Chinese).
[24] 孙岩, 王运涛, 王光学, 等. 两类基于径向基函数插值的动网格技术[C]//全国空气弹性学术交流会, 2013. SUN Y, WANG Y T, WANG G X, et al. Two kinds of dynamic mesh techniques based on radial basis function interpolation[C]//Chinese Aeroelasticity Symposion, 2013(in Chinese).
[25] THOMAS P D, LOMBARD C K. Geometric conservation law and its application to flow computations on moving grids[J]. AIAA Journal, 1979, 17(10):1030-1037.
[26] MA R, CHANG X H, ZHANG L P, et al. On the geometric conservation law for unsteady flow simulations on moving mesh[J]. Procedia Engineering, 2015, 126:639-644.
文章导航

/