论文

基于Kalman滤波的空天飞行器再入制导算法

  • 尤志鹏 ,
  • 杨勇 ,
  • 刘刚 ,
  • 曹晓瑞 ,
  • 郑宏涛
展开
  • 中国运载火箭技术研究院, 北京 100076

收稿日期: 2020-08-05

  修回日期: 2020-08-21

  网络出版日期: 2020-10-23

基金资助

国防基础科研项目(JCKY2019203A003)

Reentry guidance algorithm based on Kalman filter for aerospace vehicles

  • YOU Zhipeng ,
  • YANG Yong ,
  • LIU Gang ,
  • CAO Xiaorui ,
  • ZHENG Hongtao
Expand
  • China Academy of Launch Vehicle Technology, Beijing 100076, China

Received date: 2020-08-05

  Revised date: 2020-08-21

  Online published: 2020-10-23

Supported by

Defense Industrial Technology Development Program(JCKY2019203A003)

摘要

针对空天飞行器应用传统数值预测校正再入制导算法实时性不佳的问题,提出一种基于Kalman滤波的预测校正制导算法。该算法采取四阶多项式拟合速度-高度飞行剖面,利用Kalman滤波估计选定的速度点对应的高度,得到满足再入走廊及航程要求的拟合系数。在此基础上,减少一个终端约束,增加一个待估计剖面参数,可实现对再入过程飞行时间的调节。研究发现,再入过程中通过在线辨识修正不确定性参数能够提高制导指令的适应性;飞行末段利用跟踪参考剖面制导可有效避免飞行速度与终端速度接近时发生拟合系数求解发散的问题。多组不同再入条件下的算例仿真结果表明,基于Kalman滤波的空天飞行器再入制导算法实时性好,制导精度高,能够实现飞行时间可控,具有较强的鲁棒性和工程应用潜力。

本文引用格式

尤志鹏 , 杨勇 , 刘刚 , 曹晓瑞 , 郑宏涛 . 基于Kalman滤波的空天飞行器再入制导算法[J]. 航空学报, 2021 , 42(11) : 524608 -524608 . DOI: 10.7527/S1000-6893.2020.24608

Abstract

A new predictor-corrector reentry guidance algorithm based on Kalman filter is proposed to improve the real-time performance of predictor-corrector reentry guidance for aerospace vehicles. The new algorithm fits the velocity-altitude flight profile with the fourth-order polynomial. To compute the fitting coefficients satisfying the requirements of the reentry corridor and the range to be flown, the altitude corresponding to the selected speed point is estimated by Kalman filter. The reentry flight time is adjusted by reducing a terminal constraint and adding a profile parameter to be estimated in the algorithm. It is found that the adaptability of guidance instructions can be improved by correcting uncertain parameters through online identification during the reentry. At the end of the flight, the divergence of the fitting coefficients when the flight speed is close to the terminal speed can be avoided by tracking the reference profile. The simulation results of different reentry conditions demonstrate that the reentry guidance algorithm based on Kalman filter has better real-time performance, higher guidance accuracy, controllable flight time, stronger robustness and engineering application potential.

参考文献

[1] GRANTZ A. X-37B orbital test vehicle and derivatives[C]//AIAA SPACE 2011 Conference & Exposition. Reston:AIAA, 2011:7315.
[2] SUCCA M, BOSCOLO I, DROCCO A, et al. IXV avionics architecture:Design, qualification and mission results[J]. Acta Astronautica, 2016, 124:67-78.
[3] 杨勇, 张辉, 郑宏涛. 有翼高超声速再入飞行器气动设计难点问题[J]. 航空学报, 2015, 36(1):49-57. YANG Y, ZHANG H, ZHENG H T. Difficulties inaerodynamic design problems of the winged hypersonic reentry vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):49-57(in Chinese).
[4] 张远龙, 谢愈. 滑翔飞行器弹道规划与制导方法综述[J]. 航空学报, 2020, 41(1):023377. ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):023377(in Chinese).
[5] POWELL R. Numerical roll reversal predictor corrector aerocapture and precision landingguidance algorithms for the Mars Surveyor Program 2001 missions[C]//23rd Atmospheric Flight Mechanics Conference. Reston:AIAA, 1998:4574.
[6] FUHRY D. Adaptive atmospheric reentry guidance for the Kistler K-1 orbital vehicle[C]//Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 1999:4211.
[7] LU P. Predictor-corrector entry guidance for low-lifting vehicles[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4):1067-1075.
[8] XUE S B, LU P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1273-1281.
[9] LU P. Entry guidance:a unified method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):713-728.
[10] LU P, BRUNNER C W, STACHOWIAK S J, et al. Verification of a fully numerical entry guidance algorithm[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(2):230-247.
[11] LU P, CERIMELE C J, TIGGES M A, et al. Optimal aerocapture guidance[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(4):553-565.
[12] 李毛毛, 胡军. 火星进入段自适应预测校正制导方法[J]. 宇航学报, 2017, 38(5):506-515. LI M M, HU J. An adaptive predictor-corrector method of Mars entry phase[J]. Journal of Astronautics, 2017, 38(5):506-515(in Chinese).
[13] 胡军, 张钊. 载人登月飞行器高速返回再入制导技术研究[J]. 控制理论与应用, 2014, 31(12):1678-1685. HU J, ZHANG Z. A study on the reentry guidance for a manned lunar return vehicle[J]. Control Theory & Applications, 2014, 31(12):1678-1685(in Chinese).
[14] YU W B, CHEN W C, JIANG Z G, et al. Omnidirectional autonomous entry guidance based on 3-D analytical glide formulas[J]. ISA Transactions, 2016, 65:487-503.
[15] 胡锦川, 陈万春. 高超声速飞行器平稳滑翔弹道设计方法[J]. 北京航空航天大学学报, 2015, 41(8):1464-1475. HU J C, CHEN W C. Steady glide trajectory planning method for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(8):1464-1475(in Chinese).
[16] YU W B, CHEN W C. Guidance law with circular no-fly zone constraint[J]. Nonlinear Dynamics, 2014, 78(3):1953-1971.
[17] 方科, 张庆振, 倪昆, 等. 高超声速飞行器时间协同再入制导[J]. 航空学报, 2018, 39(5):321958. FANG K, ZHANG Q Z, NI K, et al. Time-coordinated reentry guidance law for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):321958(in Chinese).
[18] SHEN Z J, LU P. Onboard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):111-121.
[19] 赵頔, 沈作军. 基于在线轨迹迭代的自适应再入制导[J]. 北京航空航天大学学报, 2016, 42(7):1526-1535. ZHAO D, SHEN Z J. Adaptive reentry guidance based on on-board trajectory iterations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7):1526-1535(in Chinese).
[20] 王肖, 郭杰, 唐胜景, 等. 基于解析剖面的时间协同再入制导[J]. 航空学报, 2019, 40(3):322565. WANG X, GUO J, TANG S J, et al. Time-cooperative entry guidance based on analytical profile[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(3):322565(in Chinese).
[21] KARLGAARD C D, KUTTY P, SCHOENENBERGER M. Coupled inertial navigation and flush air data sensing algorithm for atmosphere estimation[J]. Journal of Spacecraft and Rockets, 2016, 54(1):128-140.
[22] 邵干, 张曙光, 唐鹏. 小型无人机气动参数辨识的新型HGAPSO算法[J]. 航空学报, 2017, 38(4):120365. SHAO G, ZHANG S G, TANG P.HGAPSO:A new aerodynamic parameters identification algorithm for small unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):120365(in Chinese).
[23] 陈尔康, 荆武兴, 高长生. 弹性高超声速滑翔飞行器的状态/参数联合估计[J]. 航空学报, 2019, 40(8):322992. CHEN E K, JING W X, GAO C S. State/parameter joint estimation for flexible hypersonic glide vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):322992(in Chinese).
[24] JOHN H M, KURTIS K F. Numerical methods using matlab[M]. New York:Person Education,Inc,2004:324-334.
文章导航

/