确定满足适航要求的最小风险炸弹位置,必须研究爆炸冲击载荷下机身结构动响应及破坏模式。以某型飞机典型机身结构为研究对象,采用LS-DYNA商用软件,建立了爆炸冲击载荷下机身典型结构动响应数值模型。采用控制变量法分析了爆炸物当量、爆炸冲击距离以及爆炸冲击位置对典型机身结构动响应及破坏模式的影响,同时研究了损伤后典型机身结构的剩余强度。研究结果表明,造成机身结构有效破坏的爆炸物临界当量与爆炸冲击距离密切相关;爆炸冲击距离对典型机身结构损伤及剩余强度影响不明显;典型机身结构筋条位置对剩余强度影响较大。在此基础上,提出了表征剩余强度的无量纲系数,并建立了剩余强度无量纲系数与爆炸物当量及爆炸冲击距离之间的函数关系。
The dynamic response and failure mode of the fuselage structure under explosive impact loads must be studied to determine the location of the minimum risk bomb that satisfies the airworthiness requirements. Taking the typical fuselage structure of a certain type of aircraft as the research object, this study uses the LS-DYNA commercial software to establish the numerical model of the dynamic response of the typical fuselage structure under explosive impact loads. The control variable method is adopted to analyze the effects of the explosive equivalent, explosive impact distance and explosive impact location on the dynamic response and failure mode of typical fuselage structures. Meanwhile, the residual strength of typical fuselage structures after damage is studied. Results show that the critical equivalent of explosives causing effective damage to the fuselage structure is closely related to the blast impact distance; the blast impact distance has little effect on the damage and residual strength of typical fuselage structures; the position of steel bars of typical fuselage structures has considerable influence on the residual strength. On this basis, the dimensionless coefficients representing the residual strength are proposed, and the functional relationship between the dimensionless coefficients of the residual strength, and the explosive equivalent and explosion impact distance is established.
[1] FAA. Security considerations requirements for transport gategory airplanes FAR Part 25 Amendment:25-127[S]. Washington, D.C.:Federal Aviation Administration, 1965.
[2] FAA. Least risk bomb location:FAA AC25.795-6[S]. Washington, D.C.:Federal Aviation Administration, 1993.
[3] BOX P O. Boeing 727-100 safe bomb location study:FAA-RD-72-94[R]. Washington, D.C.:Federal Aviation Admin-istration, 1972.
[4] AVERY J, CHANG B, WHITE R. Boeing 747-100 safe bomb location study:FAA-RD-74-201[R]. Washington, D.C.:Federal Aviation Administration, 1974.
[5] DARLING R E. DC-9 safe bomb location study:FAA-RD-72-88[R]. Washington, D.C.:Federal Aviation Administration, 1973.
[6] HIMMEL E J. Lockheed L-1011 safe bomb location study:FAA-RD-74-202[R]. Washington, D.C.:Federal Aviation Administration, 1974.
[7] 冯振宇, 周书婷, 李恒晖, 等. 运输类飞机"最小风险炸弹位置"的研究进展[J]. 航空工程进展, 2018, 9(3):316-324. FENG Z Y, ZHOU S T, LI H H, et al. Research progress on the "least risk bomb location" (LRBL) for transport aircraft[J]. Advances in Aeronautical Science and Engineering, 2018, 9(3):316-324(in Chinese).
[8] 陆鹏, 郭中宝, 杨超. 民用飞机最小风险炸弹位置适航符合性验证方法研究[J]. 民用飞机设计与研究, 2016(4):6-12. LU P, GUO Z B, YANG C. Verification method investigation of airworthiness compliance for civil air-craft least risk bomb location design[J]. Civil Aircraft Design & Research, 2016(4):6-12(in Chinese).
[9] MA L, HU Y, ZHENG J Y, et al. Failure analysis for cylindrical explosion containment vessels[J]. Engineering Failure Analysis, 2010, 17(5):1221-1229.
[10] RUSHTON N, SCHLEYER G K, CLAYTON A M, et al. Internal explosive loading of steel pipes[J]. Thin-Walled Structures, 2008, 46(7-9):870-877.
[11] CLUBLEY S K. Nonlinear long duration blast loading of cylindrical shell structures[J]. Engineering Structures, 2014, 59:113-126.
[12] LANGDON G S, OZINSKY A, CHUNG K Y S. The response of partially confined right circular stainless steel cylinders to internal air blast loading[J]. International Journal of Impact Engineering, 2014, 73:1-14.
[13] 郑成, 孔祥韶, 周沪, 等. 全封闭舱内爆炸载荷作用下薄板变形研究[J]. 兵工学报, 2018, 39(8):1582-1589. ZHENG C, KONG X S, ZHOU H, et al. On the deformation of thin plates subjected to confined blast load-ing[J]. Acta Armamentarii, 2018, 39(8):1582-1589(in Chinese).
[14] 罗兴柏, 张玉令, 丁玉奎. 爆炸及其防护简明教程[M]. 北京:国防工业出版社, 2016:38-40. LUO X B, ZHANG Y L, DING Y K, et al. A brief tutorial on explosion and its protection[M]. Beijing:National Defense Industry Press, 2016:38-40(in Chinese).
[15] HENRYCH J, MAJOR R. The dynamics of explosion and its use[M]. New York:Elsevier Scientific Publishing Company, 1979.
[16] BRODE H L. Blast wave from a spherical charge[J]. The Physics of Fluids, 1959, 2(2):217-229.
[17] 罗兴柏, 张玉令. 爆炸力学理论教程[M]. 北京:国防工业出版社, 2016:330-360. LUO X B, ZHANG Y L. Explosion theory course[M]. Beijing:National Defense Industry Press, 2016:330-360(in Chinese).
[18] 郑金国, 周书婷, 解江, 等. 爆炸载荷作用下2024-T3铝合金板动态响应试验研究[J]. 装备制造计算, 2017(2):127-130. ZHENG J G, ZHOU S T, XIE J, et al. Experimental method for dynamic response of 2024-T3 aluminum alloy plate under blast load[J]. Equipment Manufacturing Technology, 2017(2):127-130(in Chinese).
[19] 李娜, 李玉龙,郭伟国. 3种铝合金材料动态性能及其温度相关性对比研究[J]. 航空学报, 2008, 29(4):903-908. LI N, LI Y L, GUO W G. Comparison of mechanical properties and their temperature dependencies for three aluminum alloys under dynamic load[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):903-908(in Chinese).
[20] 秦宇, 沙智华, 刘宇. 基于不同前角的航空铝合金切削过程分析[J]. 航空制造技术, 2016(14):97-101. QIN Y, SHA Z H, LIU Y. Analysis of cutting process of aviation aluminum alloy based on different tool rake angles[J]. Aeronautical Manufacturing Technology, 2016(14):97-101(in Chinese).
[21] 刘旭阳. TC4钛合金动态本构关系研究[D]. 南京:南京航空航天大学, 2010:29-32. LIU X Y. Dynamic constitutive relationship of TC4 titanium alloy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:29-32(in Chinese).
[22] 孟卫华, 王建军, 米栋, 等. 航空发动机用蜂窝材料应变率相关本构模型及应用研究[J]. 应用数学和力学, 2018, 39(6):665-671. MENG W H, WANG J J, MI D, et al. Application of strain-rate-dependent material models to aero-engine honeycomb casing analysis[J]. Applied Mathematics and Mechanics, 2018, 39(6):665-671(in Chinese).