电动飞机专栏

水上电动飞机浮筒设计及起飞滑行

  • 赵立杰 ,
  • 田孟伟 ,
  • 李景奎 ,
  • 王明阳 ,
  • 刘达
展开
  • 1. 沈阳航空航天大学 航空宇航学院, 沈阳 110136;
    2. 辽宁通用航空研究院, 沈阳 110136;
    3. 沈阳航空航天大学 民用航空学院, 沈阳 110136

收稿日期: 2020-08-03

  修回日期: 2020-08-27

  网络出版日期: 2020-10-16

基金资助

辽宁省自然科学基金(20180551052)

Float design and take-off taxiing of electric seaplanes

  • ZHAO Lijie ,
  • TIAN Mengwei ,
  • LI Jingkui ,
  • WANG Mingyang ,
  • LIU Da
Expand
  • 1. College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China;
    2. Liaoning General Aviation Academy, Shenyang 110136, China;
    3. College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, China

Received date: 2020-08-03

  Revised date: 2020-08-27

  Online published: 2020-10-16

Supported by

Natural Science Foundation of Liaoning Province of China (20180551052)

摘要

水上飞机起飞滑跑时低速滑行阶段的阻力变化规律对于其设计研究十分重要,而电动水上飞机正常起飞所需最大拉力是否匹配现有电推进系统是飞机改型设计的关键。首先,针对基准浮筒水阻力较大引起的纵向不稳定问题进行了优化设计,优化后浮筒水动性能有明显提高。其次,基于Fluent中的多相流(VOF)模型对水上电动飞机起飞滑跑阶段的力学特征进行了数值模拟计算,着重分析了不同速度下的姿态变化规律、阻力变化及流场特性。最后,对"阻力峰"这一节点下所需电推进系统功率进行了验证计算,结果显示现有装置满足起飞的动力要求;将实际起飞滑跑试验与仿真结果进行对比,结果显示力学特性变化规律基本一致,所得误差在15%之内,验证了仿真计算的可行性,所得结论可为电动水上飞机的研究设计提供借鉴。

本文引用格式

赵立杰 , 田孟伟 , 李景奎 , 王明阳 , 刘达 . 水上电动飞机浮筒设计及起飞滑行[J]. 航空学报, 2021 , 42(3) : 624590 -624590 . DOI: 10.7527/S1000-6893.2020.24590

Abstract

The law of resistance changes in the low-speed taxiing phase of the seaplane during take-off is highly important for the plane design. Whether the maximum pull required for the normal take-off of the electric seaplane matches the existing electric propulsion system has become the key to the aircraft modification design. The design for the longitudinal instability caused by the large water resistance of the reference buoy is first optimized, significantly improving the hydrodynamic performance of the buoy. Based on the Volume of Fluid (VOF) model in Fluent, numerical simulations of the mechanical characteristics of the hydroelectric aircraft during the take-off taxiing phase are then performed, mainly analyzing the law of attitude changes, resistance changes and flow field characteristics at different speeds. Finally, the electric propulsion system power required at the "resistance peak" node is verified and calculated. The existing device satisfies the power requirements for the take-off. The actual take-off roll test is compared with the simulation results, revealing that the changes in mechanical characteristics are essentially identical. With the error within 15%, the feasibility of the simulation calculation is verified, providing reference for the research and design of electric seaplanes.

参考文献

[1] 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1):57-68. HUANG J, YANG F T. Development and challenges of new energy electric aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):57-68(in Chinese).
[2] 范振伟, 杨凤田, 项松, 等. 我国电动飞机发展现状及建议[J]. 航空科学技术, 2019, 30(11):18-21. FAN Z W, YANG F T, XIANG S, et al. The development status of electric aircraft in my country and suggestions[J]. Aviation Science and Technology, 2019, 30(11):18-21(in Chinese).
[3] 褚林塘. 水上飞机水动力设计[M]. 北京:航空工业出版社, 2014. CHU L T. Hydrodynamic design of seaplane[M]. Beijing:Aviation Industry Press, 2014(in Chinese).
[4] 宋佳阳, 董振林, 林长亮. 陆基飞机改水上飞机气动特性研究[J]. 南京航空航天大学学报, 2018, 50(4):565-569. SONG J Y, DONG Z L, LIN C L. Study on aerodynamic characteristics of land-based aircraft converted to seaplane[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2018, 50(4):565-569(in Chinese).
[5] 张浪, 程用胜, 王福新. 水上飞机静水起飞过程水气耦合性能分析[J]. 科学技术与工程, 2018, 18(11):190-195. ZHANG L, CHENG Y S, WANG F X. Analysis of water air coupling performance during hydroplane take-off process[J]. Science Technology and Engineering, 2018, 18(11):190-195(in Chinese).
[6] 孙丰, 王明振, 褚林塘, 等. 大型水陆两栖飞机波浪水面着水分析方法[J]. 航空计算技术, 2019, 49(4):35-38. SUN F, WANG M Z, CHU L T, et al. Analysis method of large amphibious aircraft wave surface impact[J]. Aviation Computing Technology, 2019, 49(4):35-38(in Chinese).
[7] 蔡宇峰, 王丽丽, 蒋荣, 等. 基于计算流体动力学的串列翼水陆两栖飞机静水面滑行过程[J]. 系统仿真技术, 2018, 14(4):304-309. CAI Y F, WANG L L, JIANG R, et al. Tandem-wing amphibious aircraft taxiing on static water based on computational fluid dynamics[J]. System Simulation Technology, 2018, 14(4):304-309(in Chinese).
[8] 卢昱锦, 肖天航, 李正洲. 高速平板着水数值模拟[J]. 航空学报, 2017, 38(S1):6-14. LU Y J, XIAO T H, LI Z Z. Numerical simulation of high-speed slab landing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):6-14(in Chinese).
[9] 孙建军, 马东立. 船身式水上飞机中高速静水滑行阻力估算[J]. 北京航空航天大学学报, 2015, 41(5):925-929. SUN J J, MA D L. Estimation of the sliding resistance of a hull-type seaplane in high-speed still water[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5):925-929(in Chinese).
[10] 李新颖, 曹楷, 吴彬, 等. 水陆两栖飞机静水面高速滑行性能数值计算与试验分析[J]. 气体物理, 2019, 4(4):56-62. LI X Y, CAO K, WU B, et al. Numerical calculation and experimental analysis of high-speed taxi performance of amphibious aircraft on static water[J]. Gas Physics, 2019, 4(4):56-62(in Chinese).
[11] 段旭鹏, 孙卫平, 魏猛, 等. 基于OpenFOAM的水陆两栖飞机水面高速滑行研究[J]. 航空学报, 2019, 40(1):522330. DUAN X P, SUN W P, WEI M, et al. Study on high-speed taxiing of amphibious aircraft based on OpenFOAM[J]. Acta Aeronautica Sinica, 2019, 40(1):522330(in Chinese).
[12] 赵芸可, 屈秋林, 刘沛清. 水上飞机水面降落全过程力学特性数值研究[J]. 北京航空航天大学学报, 2020, 46(4):830-838. ZHAO Y K, QU Q L, LIU P Q. Numerical study on the mechanical characteristics of the seaplane during the landing process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4):830-838(in Chinese).
[13] MAYO W L. Analysis and modification of theory for impact of seaplanes on water:NACA-TR-810[R]. Washington, D.C.:National Advisory Committee for Aeronautic, 1945.
[14] CANAMAR L, ALAN L. Seaplane conceptual design and sizing[D]. Glasgow:University of Glasgow, 2012.
[15] 周晨, 王志瑾, 支骄杨. 基于Isight的自适应翼型前缘气动优化设计[J]. 上海交通大学学报, 2014, 48(8):1122-1126, 1133. ZHOU C, WANG Z J, ZHI J Y. Aerodynamic optimization design of adaptive airfoil leading edge based on Isight[J]. Journal of Shanghai Jiao Tong University, 2014, 48(8):1122-1126, 1133(in Chinese).
[16] 王振宇, 王亚兴, 俞建成, 等. 基于改进LHS方法的翼型水下滑翔机水动力外形优化[J]. 海洋技术学报, 2017, 36(3):50-56. WANG Z Y, WANG Y X, YU J C, et al. Optimization of hydrodynamic shape of airfoil underwater glider based on improved LHS method[J]. Journal of Ocean Technology, 2017, 36(3):50-56(in Chinese).
[17] 薛侠峰, 严天宏. 水下自航行器外形及水动力性能优化[J]. 计算机测量与控制, 2016, 24(3):228-230. XUE X F, YAN T H. The shape and hydrodynamic performance optimization of underwater self-propelled vehicles[J]. Computer Measurement and Control, 2016, 24(3):228-230(in Chinese).
[18] 王刚成, 马宁, 顾解忡. 基于Kriging代理模型的船舶水动力性能多目标快速协同优化[J]. 上海交通大学学报, 2018, 52(6):666-673. WANG G C, MA N, GU J Y. Multi-objective rapid collaborative optimization of ship hydrodynamic performance based on Kriging proxy model[J]. Journal of Shanghai Jiao Tong University, 2018, 52(6):666-673(in Chinese).
[19] 刘福佳, 杨凤田, 刘远强. 电动轻型飞机电推进系统选型与参数匹配[J]. 南京航空航天大学学报, 2019, 51(3):350-356. LIU F J, YANG F T, LIU Y Q. Selection and parameter matching of electric propulsion system of electric light aircraft[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2019, 51(3):350-356(in Chinese).
[20] 李亚东, 张子军, 杨凤田,等. 某型电动飞机起飞爬升性能分析及飞行试验[J]. 科学技术与工程, 2019, 19(35):364-369. LI Y D, ZHANG Z J, YANG F T, et al. Takeoff and climb performance analysis and flight test of a certain electric aircraft[J]. Science Technology and Engineering, 2019, 19(35):364-369(in Chinese).
[21] 郗超, 成婷婷. 水上飞机水上试飞技术研究[J]. 中国科技信息, 2019(5):33-35. XI C, CHENG T T. Study on the technology of seaplane flight test[J]. China Science and Technology Information, 2019(5):33-35(in Chinese).
文章导航

/