固体力学与飞行器总体设计

新型铝锂合金AA2198高频疲劳红外热耗散演化规律

  • 许罗鹏 ,
  • 胡石 ,
  • 刘青松 ,
  • 王清远
展开
  • 1. 中国民用航空飞行学院 理学院, 广汉 618307;
    2. 四川大学 破坏力学与工程防灾减灾四川省重点实验室, 成都 610065;
    3. 中国民用航空飞行学院 民航光子与光学探测重点实验室, 广汉 618307;
    4. 四川大学 高分子研究所 高分子材料工程国家重点实验室, 成都 610065;
    5. 浙江冠林机械有限公司, 安吉 313310;
    6. 中国民用航空飞行学院 民航安全工程学院, 广汉 618307;
    7. 成都大学 机械工程学院, 成都 610106

收稿日期: 2020-07-02

  修回日期: 2020-08-26

  网络出版日期: 2020-10-16

基金资助

四川大学破坏力学与工程防灾减灾四川省重点实验室2020年开放课题基金(2020FMSCU02);中国民用航空飞行学院科研基金(J2020-060,JG2019-19-02,J2020-057);大学生创新训练项目(S201910624213);四川省教育厅资助项目(16ZB0034);国家自然科学基金(U1433127)

High-frequency fatigue infrared heat dissipation of new Al-Li alloy AA2198

  • XU Luopeng ,
  • HU Shi ,
  • LIU Qingsong ,
  • WANG Qingyuan
Expand
  • 1. School of Science, Civil Aviation Flight University of China, Guanghan 618307, China;
    2. Failure Mechanics&Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China;
    3. Key Laboratory of Photonic and Optical Detection in Civil Aviation, Civil Aviation Flight University of China, Guanghan 618307, China;
    4. Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China;
    5. Zhejiang Guanlin Machinery Inc., Anji 313310, China;
    6. College of Civil Aviation Safety Engineering, Guanghan 618307, China;
    7. School of Mechanical Engineering, Chengdu University, Chengdu 610106, China

Received date: 2020-07-02

  Revised date: 2020-08-26

  Online published: 2020-10-16

Supported by

Sichuan University Failure Mechanics & Engineering Disaster Prevention and Mitigation Key Laboratory of Sichuan Province Open Foundation (2020FMSCU02); CAFUC Foundation (J2020-060, JG2019-19-02, J2020-057); Undergraduate Training Programs for Innovation and Entrepreneurship (S201910624213); Natural Science Foundation of Sichuan Province (16ZB0034); National Natural Science Foundation of China (U1433127)

摘要

利用红外成像技术开展新型铝锂合金AA2198高频疲劳(100 Hz)热耗散演化规律研究,发现不同应力条件下疲劳热耗散呈现上下波动特征,试件平均温度随着加载应力的提升有增加的趋势,但升温现象并不明显,不同应力条件下温度变化幅值小于1℃。疲劳试验初期和疲劳断裂时伴随着急剧升温过程,提出的能量转化理论模型合理解释了疲劳热耗散演化过程。研究还发现,喷丸强化在试件表面形成的残余压应力有助于激发疲劳裂纹的闭合效应,对试件的升温过程具有抑制作用。

本文引用格式

许罗鹏 , 胡石 , 刘青松 , 王清远 . 新型铝锂合金AA2198高频疲劳红外热耗散演化规律[J]. 航空学报, 2021 , 42(9) : 224482 -224482 . DOI: 10.7527/S1000-6893.2020.24482

Abstract

An infrared imaging technology is used to study the rule of fatigue heat dissipation evolution of a new Al-Li alloy AA2198 under a high-frequency fatigue test condition of 100 Hz. It is found that fatigue heat dissipation on specimens shows fluctuation characteristics under different stress conditions, with its average temperature inclined to increase with the rise of the loading stresses. However, the temperature rise on specimens during fatigue test is not obvious, and the amplitudes of temperature variation under different stress condition is generally smaller than 1℃. The beginning of fatigue test and the moment of fatigue fracture occurrence are accompanied by a rapid temperature rise. An energy conversion theory model is proposed to explain the evolution process of fatigue heat dissipation. Meanwhile, the residual compressive stress formed on specimen subsurface during the shot peening process helps to intensify the fatigue crack closure, inhibiting the temperature rise on specimens.

参考文献

[1] FURUYA Y, KOBAYASHI K, HAYAKAWA M, et al. High-temperature ultrasonic fatigue testing of single-crystal superalloys[J]. Materials Letters, 2012, 69:1-3.
[2] 杨正伟, 赵志彬, 李胤, 等. 压-压疲劳载荷下CFRP层合板表面红外辐射特征[J]. 航空学报, 2021, 42(5):524239. YANG Z W, ZHAO Z B, LI Y, et al. Study on infrared radiation characteristics on the surface of CFRP laminates under compressive fatigue load[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524239(in Chinese).
[3] 蔺越国, GIGLIOTTI M, LAFARIE-FRENOT M C, 等. 电-热耦合对航空复合材料拉伸及疲劳性能的影响[J]. 航空学报, 2014, 35(12):3315-3323. LIN Y G, GIGLIOTTI M, LAFARIE-FRENOT M C, et al. Thermo-electricalcoupling effect on tensile and fatigue strength of composite materials for aeronautical application[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3315-3323(in Chinese).
[4] ROSA L G, RISITANO A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components[J]. International Journal of Fatigue, 2000, 22(1):65-73.
[5] FARGIONE G, GERACI A, ROSA LA G, et al. Rapid determination of the fatigue curve by the thermographic method[J]. International Journal of Fatigue, 2002, 24(1):11-19.
[6] LUONG M P.Infrared thermographic scanning of fatigue in metals[J]. NDT & E International, 1995, 29(6):392.
[7] LUONG M P. Fatigue limit evaluation of metals using an infrared thermographic technique[J]. Mechanics of Materials, 1998, 28:155-163.
[8] CRUPI V, GUGLIELMINO E, MAESTRO M, et al. Fatigue analysis of butt welded AH36 steel joints:Thermographic Method and design S-N curve[J]. Marine Structures, 2009, 22(3):373-386.
[9] GUO Q, GUO X L, FAN J L,et al. An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation[J]. International Journal of Fatigue, 2015, 80:136-144.
[10] 许罗鹏, 王清远. 基于红外成像技术的铝锂合金2198疲劳裂纹监测机制研究[J]. 科学技术与工程, 2017, 17(19):1-7. XU L P, WANG Q Y. A research on monitoring fatigue crack growth of Al-Li Alloy 2198 based on infrared thermographic technology[J]. Science Technology and Engineering, 2017, 17(19):1-7(in Chinese).
[11] XU L P, WANG Q Y, ZHOU M. Micro-crackinitiation and propagation in a high strength aluminum alloy during very high cycle fatigue[J]. Materials Science & Engineering A, 2018, 715:404-413.
[12] WANG C, BLANCHE A, WAGNER D, et al. Dissipative and microstructural effects associated with fatigue crack initiation on an Armco iron[J]. International Journal of Fatigue, 2014, 58:152-157.
[13] 张红霞, 裴飞飞, 闫志峰, 等. 基于红外热像法的AZ31B镁合金疲劳寿命预测[J]. 稀有金属材料与工程, 2014, 43(10):2525-2529. ZHANG H X, PEI F F, YAN Z F, et al. Prediction of AZ31B magnesium alloy fatigue life based on infrared thermography[J]. Rare Metal Materials and Engineering, 2014, 43(10):2525-2529(in Chinese).
[14] 樊俊铃, 郭杏林, 吴承伟, 等. 热像法和能量法快速评估Q235钢的疲劳性能[J]. 材料工程, 2012(12):75-80. FAN J L, GUO X L, WU C W, et al. Fastevaluation of fatigue behavior of Q235 steel by infrared thermography and energy approach[J]. Journal of Materials Engineering, 2012(12):75-80(in Chinese).
[15] RAY A, ROY U, KUMARI M, et al. Therole of substructural features on the deformation and fracture behavior of BCC and FCC high entropy alloys[J]. Procedia Structural Integrity, 2019, 23:299-304.
[16] 薛红前, 杨斌堂, BATHIAS C. 高频载荷下高强钢的超高周疲劳及热耗散研究[J]. 材料工程, 2009(3):49-53. XUE H Q, YANG B T, BATHIAS C. Veryhigh cycle fatigue behavior and thermographic analysis of high strength steels under high frequency loading[J]. Journal of Materials Engineering, 2009(3):49-53(in Chinese).
[17] XUE H Q, BAYRAKTAR E, BATHIAS C. Damage mechanism of a nodular cast iron under the very high cycle fatigue regime[J]. Journal of Materials Processing Technology, 2008, 202(1):216-223.
[18] 魏凌霄, 闫志峰, 王文先, 等. 基于红外热成像的镁合金疲劳裂纹扩展的研究[J]. 机械工程学报, 2012, 48(6):64-69. WEI L X, YAN Z F, WANG W X, et al. Study onfatigue crack propagation of AZ31B magnesium alloy based on infrared thermographic technology[J]. Journal of Mechanical Engineering, 2012, 48(6):64-69(in Chinese).
[19] RIOJA R J, LIU J. Theevolution of Al-Li base products for aerospace and space applications[J]. Metallurgical & Materials Transactions A, 2012, 43(9):3325-3337.
[20] DURSUN T, SOUTIS C. Recent developments in advanced aircraftaluminium alloys[J]. Materials & Design, 2014, 56(4):862-871.
[21] 许罗鹏, 曹小建, 李久楷, 等. 铝锂合金2198-T8高周疲劳性能及其裂纹萌生机理[J]. 稀有金属材料与工程, 2017, 46(1):83-89. XU L P, CAO X J, LI J K, et al. Highcycle fatigue properties and crack initiation mechanisms of Al-Li 2198-T8 alloy[J]. Rare Metal Materials and Engineering, 2017, 46(1):83-89(in Chinese).
[22] 姜丽萍. C919的制造技术热点及最新研制进展[J]. 航空制造技术, 2013, 442(22):26-31. JIANG L P. Hottopic and the latest advances in manufacturing technology of C919[J]. Aeronautical Manufacturing Technology, 2013, 442(22):26-31(in Chinese).
[23] BENEDETTI M, FONTANARI V, BANDINI M, et al. High-and very high-cycle plain fatigue resistance of shot peened high-strength aluminum alloys:The role of surface morphology[J]. International Journal of Fatigue, 2015, 70:451-462.
[24] RAMOS R, FERREIRA N, FERREIRA J A M, et al. Improvement in fatigue life of Al 7475-T7351 alloy specimens by applying ultrasonic andmicroshot peening[J]. International Journal of Fatigue, 2016, 92:87-95.
[25] TAKAHASHI K, OSEDO H, SUZUKI T, et al. Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening[J]. Engineering Fracture Mechanics, 2018, 193:151-161.
[26] SUN B L, WANG Y J, XIAO J Y, et al. Evolution ofmicrostructure and properties of 2196 Al-Li alloy induced by shot peening[J]. Procedia Engineering, 2014, 81:1043-1048.
[27] 张杰, 白雪飘, 陆业航, 等. 不同强度喷丸处理后铝锂合金表面的残余应力[J]. 机械工程材料, 2016, 40(2):37-39. ZHANG J, BAI X P, LU Y H, et al. Surfaceresidual stress in aluminum-lithium alloy shot-peened at different shot peening intensities[J]. Materials for Mechanical Engineering, 2016, 40(2):37-39(in Chinese).
文章导航

/