流体力学与飞行力学

舵面破损对飞机轴间运动耦合飞行品质的影响

  • 殷海鹏 ,
  • 王立新 ,
  • 乐挺 ,
  • 刘海良 ,
  • 张喆 ,
  • 尤俊彬
展开
  • 1. 北京航空航天大学 航空科学与工程学院, 北京 100191;
    2. 中国飞行试验研究院, 西安 710089

收稿日期: 2020-06-04

  修回日期: 2020-08-27

  网络出版日期: 2020-10-16

基金资助

航空科学基金(20161351008)

Influence of control surface damage on flying qualities of inter-axis motion coupling

  • YIN Haipeng ,
  • WANG Lixin ,
  • YUE Ting ,
  • LIU Hailiang ,
  • ZHANG Zhe ,
  • YOU Junbin
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
    2. Chinese Flight Test Establishment, Xi'an 710089, China

Received date: 2020-06-04

  Revised date: 2020-08-27

  Online published: 2020-10-16

Supported by

Aeronautical Science Foundation of China (20161351008)

摘要

为研究舵面破损对电传控制飞机轴间运动耦合飞行品质的影响,选取了能够反映飞机多轴运动耦合特性的飞行品质评定任务,建立了舵面破损飞机的飞行动力学模型,选取了适用于表征飞机轴间运动耦合程度的特征参数,形成了基于任务的角速率指令式电传控制飞机轴间运动耦合飞行品质的评定方法。采用该方法对具有不同舵面破损程度的算例飞机开展了飞行品质评估试验,得到了能够量化舵面破损对角速率指令式电传控制飞机飞行品质影响的特征参数取值规律。研究结果对于舵面破损情形下飞机飞行安全与作战效能评估等均有一定的理论参考价值。

本文引用格式

殷海鹏 , 王立新 , 乐挺 , 刘海良 , 张喆 , 尤俊彬 . 舵面破损对飞机轴间运动耦合飞行品质的影响[J]. 航空学报, 2021 , 42(6) : 124364 -124364 . DOI: 10.7527/S1000-6893.2020.24364

Abstract

To examine the influence of control surface damage on flying qualities of inter-axis motion coupling of wire aircraft, we select the demonstration maneuver which can reflect the coupling characteristics of multi-axis motion and establish the flight dynamics model of the aircraft with control surface damage. The flying quality parameters suitable for coupling motion degree characterization are determined, and the evaluation method of flying qualities of the mission-oriented inter-axis motion coupling of the wire aircraft is realized. Based on the method, flying quality evaluation experiments are conducted on aircraft with different damage conditions, and the boundaries of characteristic parameters which can quantify the influence of the control surface damage on flying qualities of inter-axis motion coupling are obtained. The study provides theoretical reference for the evaluation of flight safety and combat effectiveness of the aircraft with damaged control surface.

参考文献

[1] 国防科学技术工业委员会国防科学技术工业委员会. 有人驾驶飞机(固定翼)飞行品质:GJB 185-86[S]. 北京:国防科学技术工业委员会, 1986. China Commission of Science Technology and Industry for National Defense. Flying qualities of piloted airplanes (Fixed wing):GBJ 185-86[S]. Beijing:China Commission of Science Technology and Industry for National Defense, 1986(in Chinese).
[2] United States Department of Defense. Military standard, flying qualities of piloted aircraft:MIL-HDBK-1797A[S]. Washington, D.C.:United States Department of Defense, 2004.
[3] SHAH G. Aerodynamic effects and modeling of damage to transport aircraft[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:AIAA, 2008:6203.
[4] NGUYEN N, KRISHNAKUMAR K, KANESHIGE J, et al. Dynamics and adaptive control for stability recovery of damaged asy mmetric aircraft[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2006:6049.
[5] ZOLGHADRI A, LEBERRE H, GOUPIL P, et al. Parametric approach to fault detection in aircraft control surfaces[J]. Journal of Aircraft, 2016, 53(3):846-855.
[6] MONCAYO H, PERHINSCHI M G, DAVIS J. Aircraft failure detection and identification using an i mmunological hierarchical multiself strategy[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1105-1114.
[7] VENKATARAMAN R, SEILER P. Fault-tolerant flight control using one aerodynamic control surface[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(3):570-584.
[8] OURDAN D, PIEDMONTE M, GAVRILETS V, et al. Enhancing UAV survivability through damage tolerant control[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2010:7548
[9] 张欣, 吕新波. 民用飞机升降舵故障的安全性研究[J]. 航空科学技术, 2016, 27(5):47-50. ZHANG X, LV X B. Safety research of civil aircraft elevator fault[J]. Aeronautical Science & Technology, 2016, 27(5):47-50(in Chinese).
[10] 丛斌, 孟祥瑞, 张迪. 飞翼飞机新型操纵舵面故障效能影响分析[J]. 战术导弹技术, 2020(2):29-33. CONG B, MENG X R, ZHANG D. Influences of control efficiency of flying-wing's new-type control surface faults[J]. Tactical Missile Technology, 2020(2):29-33(in Chinese).
[11] 刘小雄, 邱岳恒, 刘世民, 等. 操纵面故障对飞行包线的影响研究[J]. 飞行力学, 2012, 30(2):128-131. LIU X X, QIU Y H, LIU S M, et al. Research for flight envelope effect of the control surface fault[J]. Flight Dynamics, 2012, 30(2):128-131(in Chinese).
[12] WANG L X, YIN H P, GUO Y G, et al. Closed-loop motion characteristic requirements of receiver aircraft for probe and drogue aerial refueling[J]. Aerospace Science and Technology, 2019, 93:105293.
[13] 王海峰. 战斗机推力矢量关键技术及应用展望[J]. 航空学报, 2020, 41(6):524057. WANG H F. Key technologies and future applications of thrust vectoring on fighter aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):524057(in Chinese).
[14] WILSON D J, RILEY D R, CITURS K D. Aircraft maneuvers for the evaluation of flying qualities and agility. Volume 2. Maneuver descriptions and section guide:WL-TR-93-3081[R]. Washington, D.C.:Defense Technical Information Center, 1993.
[15] MITCHELL D G, ROGER H H, BIMAL L A, et al. Proposed incorporation of mission-oriented flying qualities into MIL-STD-1797A:WL-TR-94-3162[R]. Washington, D.C.:Defense Technical Information Center, 1994.
[16] WANG L X, GUO Y G, ZHANG Q, et al. Suggestion for aircraft flying qualities requirements of a short-range air combat mission[J]. Chinese Journal of Aeronautics, 2017, 30(3):881-897.
[17] 王发威, 董新民, 陈勇, 等. 多操纵面飞机舵面损伤的快速故障诊断[J]. 航空学报, 2015, 36(7):2350-2360. WANG F W, DONG X M, CHEN Y, et al. Fast fault diagnosis of multi-effectors aircraft with control surface damage[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2350-2360(in Chinese).
[18] 丛戎飞, 叶友达, 赵忠良. 吸气式高超声速飞行器俯仰/滚转耦合运动特性[J]. 航空学报, 2020, 41(4):123588. CONG R F, YE Y D, ZHAO Z L. Characteristics of air-breathing hypersonic vehicle in force-pitch and free-roll coupling motion[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):123588(in Chinese).
[19] 程鹏飞, 吴成富, 段晓军, 等. 机翼不对称损伤无人机在大侧滑角下的飞行动力学研究[J]. 西北工业大学学报, 2014, 32(5):682-687. CHENG P F, WU C F, DUAN X J, et al. Researching high sideslip angle flight dynamics of wing-damaged asy mmetric aircraft[J]. Journal of Northwestern Polytechnical University, 2014, 32(5):682-687(in Chinese).
[20] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京:北京航空航天大学出版社, 2005. FANG Z P, CHEN W C, ZHANG S G. Aircraft flight dynamics[M]. Beijing:Beijing University of Aeronautics & Astronautics Press, 2005(in Chinese).
[21] SONNEVELDT L, CHU Q P, MULDER J A. Nonlinear flight control design using constrained adaptive backstepping[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):322-336.
[22] NGUYEN L T, OGBURN M E, GILBERT W P, et al. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability:NASA 1538[R]. Washington, D.C.:NASA, 1979.
[23] MILLER C. Nonlinear dynamic inversion baseline control law:Architecture and performance predictions[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2011:6467.
[24] MILLER C. Nonlinear dynamic inversion baseline control law:Flight-test results for the full-scale advanced systems testbed F/A-18 airplane[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2011:6468.
[25] 魏扬, 徐浩军, 薛源, 等. 基于神经网络自适应动态逆的结冰飞机飞行安全边界保护方法[J]. 航空学报, 2019, 40(5):122488. WEI Y, XU H J, XUE Y, et al. Aircraft flight safety envelope protection under icing conditions based on adaptive neural network dynamic inversion[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122488(in Chinese).
[26] 刘东亮, 徐浩军, 张久星. 多因素耦合复杂飞行情形风险定量评估方法[J]. 航空学报, 2013, 34(3):509-516. LIU D L, XU H J, ZHANG J X. Quantitative risk evaluation methods for multi-factor coupling complex flight situations[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):509-516(in Chinese).
[27] United States Army Aviation and Missile Command. Handling qualities requirements for military rotorcraft:ADS-33E-PRF[S]. Washington, D.C.:United States Army Aviation and Missile Command, 2000.
[28] LEMERY J, RYAN K, MARTEN D, et al. Limited handling qualities evaluation of inter-axis control coupling[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2011:6543
[29] 高金源, 李陆豫, 冯亚昌. 飞机飞行品质[M]. 北京:国防工业出版社, 2003. GAO J Y, LI L Y, FENG Y C. Aircraft handling qualities[M]. Beijing:National Defense Industry Press, 2003(in Chinese).
文章导航

/