材料工程与机械制造

TiC-TiB2复合相钛基稀土激光熔覆层组织与性能

  • 张天刚 ,
  • 张倩 ,
  • 庄怀风 ,
  • 李宝轩 ,
  • 徐誉桐
展开
  • 1. 中国民航大学 民航技术研究院, 天津 300300;
    2. 中国民航大学 航空工程学院, 天津 300300;
    3. 中国民航大学 中欧航空工程师学院, 天津 300300

收稿日期: 2020-04-25

  修回日期: 2020-05-21

  网络出版日期: 2020-10-16

基金资助

国家自然科学基金(51371125);中央高校基本科研业务费专项资金(3122018D013);天津市研究生科研创新项目(2019YJSS077)

Microstructure and properties of TiC-TiB2 composite phase Ti-based rare earth laser cladding layers

  • ZHANG Tiangang ,
  • ZHANG Qian ,
  • ZHUANG Huaifeng ,
  • LI Baoxuan ,
  • XU Yutong
Expand
  • 1. Institute of Civil Aviation Technology, Civil Aviation University of China, Tianjin 300300, China;
    2. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China;
    3. Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China

Received date: 2020-04-25

  Revised date: 2020-05-21

  Online published: 2020-10-16

Supported by

National Natural Science Foundation of China (51371125); The Fundamental Research Funds for the Central Universities (3122018D013); Tianjin Research Innovation Project for Postgraduate Students (2019YJSS077)

摘要

采用通快同轴送粉4002光纤激光器,在TC4表面熔覆制备了不同含量Y2O3的TC4+Ni45+Co-WC+Y2O3钛基复合耐磨涂层。采用XRD、SEM、EDS、EPMA测试研究了涂层微观组织,利用显微硬度计、摩擦磨损实验机和白光轮廓仪分析评价了涂层的显微硬度和摩擦学性能。结果表明,涂层生成相不随Y2O3含量变化而改变,主要包括Ti2Ni、TiC、TiB2以及α-Ti;未添加Y2O3涂层,生成相尺寸粗大,方向性明显;随着Y2O3的加入,涂层组织逐步细化,生成相方向性减弱;当Y2O3为3wt%时,涂层析出相以颗粒和短棒状相为主,合成了大量TiC-TiB2依附生长复合相,经二维点阵错配度计算,TiB2(0001)与TiC (111)错配度δ为0.912%,TiC与TiB2形成了共格界面,可有效增加涂层组织分布均匀性;Y2O3含量为0wt%、1wt%和3wt%时,涂层显微硬度逐渐减小,磨损体积先增大后减小,摩擦系数逐渐降低;在TiC-TiB2复合相的作用下,3wt% Y2O3涂层的耐磨、减摩性最优,涂层磨损机理为磨粒磨损。

本文引用格式

张天刚 , 张倩 , 庄怀风 , 李宝轩 , 徐誉桐 . TiC-TiB2复合相钛基稀土激光熔覆层组织与性能[J]. 航空学报, 2021 , 42(7) : 424139 -424139 . DOI: 10.7527/S1000-6893.2020.24139

Abstract

Wear-resistant TC4+Ni45+Co-WC+Y2O3 multi-channel overlapping Ti-based composite coatings with different Y2O3 mass fractions are cladded on TC4 by the TRUMPF 4002 coaxial powder feeding fiber laser. The microstructure of the coatings is tested and analyzed using XRD, SEM, EDS and EPMA. The microhardness and tribological properties of the coatings are analyzed by a microhardness tester, a friction and wear tester and a white light profiler. The results show that the phases in the coatings remain unchanged with different Y2O3 additions, mainly including Ti2Ni, TiC, TiB2 and α-Ti. In the coating without Y2O3, the phases are large in size with obvious directionality. With the addition of Y2O3, the microstructure of the coatings is gradually refined, and the directionality of the phases is weakened. When the Y2O3 addition is 3wt%, the precipitates in the coating are mainly particles and short rods, and a large number of TiC-TiB2 dependent growth composite phases are synthesized in the coating. Based on the two-dimensional lattice misfit calculation, the misfit δ between TiB2(0001) and TiC(111) is 0.912%, with TiC and TiB2 forming the coherent interface, thereby effectively increasing the distribution uniformity of the coating microstructure. With the addition of Y2O3, the microhardness of the coating decreases gradually, the wear volume of the coating first increases and then decreases, and the friction coefficient of the coating decreases gradually. The antifriction and wear resistance of the 3wt% Y2O3 coating are the best under the action of the TiC-TiB2 dependent growth composite phase, with the wear mechanism of the coating being abrasive wear.

参考文献

[1] 李福泉, 高振增, 李俐群, 等. TC4表面丝粉同步激光熔覆制备复合材料层的微观组织和性能[J]. 稀有金属材料与工程, 2017, 46(1):177-182. LI F Q, GAO Z Z, LI L Q, et al. Microstructure and properties of compound layer fabricated by coincident wire-powder laser cladding on Ti6Al4V surface[J]. Rare Metal Materials and Engineering, 2017, 46(1):177-182(in Chinese).
[2] 郭良刚, 杨合, 邸伟佳, 等. TC4钛合金薄壁带筋锥形环辗轧充填规律[J]. 航空学报, 2015, 36(8):2798-2806. GUO L G, YANG H, DI W J, et al. Filling rules in thin-walled and ribbed conical ring rolling for TC4titanium alloy[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2798-2806(in Chinese).
[3] PAYDAS H, MERTENS A, CARRUS R, et al. Laser cladding as repair technology for Ti-6Al-4V alloy:Influence of building strategy on microstructure and hardness[J]. Materials & Design, 2015, 85(15):497-510.
[4] 张天刚, 庄怀风, 薛鹏, 等. 钛基稀土激光熔覆层组织细化机制及性能[J].航空学报, 2020, 41(9):423553. ZHANG T G, ZHUANG H F, XUE P, et al. Microstructure refinement mechanism and properties of Ti-based rare earth laser cladding layers[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):423553(in Chinese).
[5] LI N, XIONG Y,XIONG H P, et al. Microstructure, formation mechanism and property characterization of Ti+SiC laser cladded coatings on Ti6Al4V alloy[J]. Material Characterization, 2019, 148:43-51.
[6] HU H D, LIU Z D, WANG L. Microstructures and properties of TiCx-reinforced metal matrix composite coating on TC4 alloy prepared by laser cladding[J]. Material Research Innovations, 2015, 19(S9):192-197.
[7] WANG W F, JIN L S, YANG J G,et al. Directional growth whisker reinforced Ti-base composites fabricated by laser cladding[J]. Surface and Coatings Technology, 2013, 236:45-51.
[8] QUAZI M M, FAZAL M A, HASEEB A S M A, et al. Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings:A review[J]. Journal of Rare Earths, 2016, 34(6):549-564.
[9] 张天刚, 庄怀风, 姚波, 等. Y2O3对钛基激光熔覆层组织及性能的影响[J/OL]. 复合材料学报:(2019-09-20)[2020-03-20]. https://doi.org/10.13801/j.cnki.fhclxb.20190920.001. ZHANG T G, ZHUANG H F, YAO B, et al. Effect of Y2O3 on microstructure and properties of Ti-based laser cladding layer[J/OL]. Acta Materiae Compositae Sinica:(2019-09-20)[2020-03-20]. https://doi.org/10.13801/j.cnki.fhclxb.20190920.001(in Chinese).
[10] LI J, LUO X, LI G J. Effect of Y2O3 on the sliding wear resistance of TiB/TiC-reinforced composite coatings fabricated by laser cladding[J]. Wear, 2014, 310(1-2):72-82.
[11] DAS A K, SHARIFF S M, ROY C A. Effect of rare earth oxide (Y2O3) addition on alloyed layer synthesized on Ti-6Al-4V substrate with Ti+SiC+h-BN mixed precursor by laser surface engineering[J]. Tribology International, 2016, 95:35-43.
[12] YIN Y, PAN C L, ZHANG R H, et al. The effect of Ti addition on the microstructure and properties of high chromium iron-based coatings[J]. Journal of Alloys and Compounds, 2018,765:782-790.
[13] WENG F, YU H J, CHEN C Z,et al. Fabrication of Co-based coatings on titanium alloy by laser cladding with CeO2 addition[J]. Materials Manufacturing Processes, 2016, 31(11):1461-1467.
[14] ZHU R D, LI Z Y, LI X X, et al. Microstructure and properties of the low-power-laser clad coatings on magnesium alloy with different amount of rare earth addition[J]. Applied Surface Science, 2015, 353:405-413.
[15] LIU J L, YU H J, CHEN C Z, et al. Research and development status of laser cladding on magnesium alloys:A review[J]. Optics and Lasers in Engineering, 2017, 93:195-210.
[16] 叶大伦, 胡建华. 实用无机热力学数据手册[M]. 2版. 北京:冶金工业出版社, 2002:115 YE D L, HU J H. Utility inorganic materials thermodynamics data handbook[M]. 2nd ed. Beijing:Metallurgy Industry Press, 2002:115(in Chinese).
[17] 许长庆, 李贵江. 激光表面合金化制备TiC颗粒增强复合材料微观结构及摩擦学性能研究[J]. 中国激光, 2008, 35(11):1770-1772. XU C Q, LI G J. Microstructure and wear resistance of TiC carbide-reinforced composite coating prepared by laser surface alloying[J]. Chinese Journal of Lasers, 2008, 35(11):1770-1772(in Chinese).
[18] 朱和国, 王恒志, 吴申庆. α-Al2O3, TiB2颗粒增强铝基复合材料的XD合成[J]. 金属学报, 2001, 37(3):321-324. ZHU H G, WANG H Z, WU S Q. α-Al2O3 and TiB2 particles reinforced aluminum matrix composites fabricated by means of exothermic dispersion[J]. Acta Metallurgica Sinica, 2001, 37(3):321-324(in Chinese).
[19] 张天刚, 庄怀风, 肖海强, 等. 稀土对Ti基激光熔覆层组织与摩擦磨损性能的影响[J]. 中国激光, 2019, 46(9):0903001. ZHANG T G, ZHUANG H F, XIAO H Q, et al. Effect of rare earth on microstructure and friction and wear properties of Ti-based laser cladding layer[J]. Chinese Journal of Lasers, 2019, 46(9):0903001(in Chinese).
[20] 朱韬, 纪秀林, 张秋阳, 等. 钢表面TiC/Ni3Al复合涂层及其冲蚀性能[J]. 材料研究学报, 2013, 27(3):299-306. ZHU T, JI X L, ZHANG Q Y, et al.TiC/Ni3Al composite coating synthesized in situ on a steel and slurry erosion wear resistance[J]. Chinese Journal of Materials Research, 2013, 27(3):299-306(in Chinese).
[21] 王振廷, 周晓辉. 氩弧熔敷原位自生TiC-TiB2/Fe复合涂层组织与磨损性能的研究[J]. 稀有金属材料与工程, 2009, 38(S1):155-158. WANG Z T, ZHOU X H. Microstructure and properties of TiC-TiB2/Fe composite coating by argon arc cladding[J]. Rare Metal Materials and Engineering, 2009, 38(S1):155-158(in Chinese).
[22] YUN X, ZHOU Y F, YANG J, et al. Refinement of nano-Y2O3 on microstructure of hypereutectic Fe-Cr-C hardfacing coatings[J]. Journal of Rare Earths, 2015, 33(6):671-678.
[23] BRAMFITT B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical and Materials Transactions B, 1970, 1(7):1987-1995.
[24] HEGENSCHEIDT T.Moeglichkeiten und Grenzen des roentgen-beugungs experiments aufgezeigt am beispiel dreier "einfacher" strukturen[D]. Karlsruhe:Universitaet Karlsruhe, 1998:1-81.
[25] SHIMADE S, WATANABE J, KODAIRA. Flux growth and characterization ofTiC crystals[J]. Journal of Materials Science, 1989, 24(7):2513-2515.
[26] DUSCHANEK H, ROGL P, LUKAS H L. A critical assessment and thermodynamic calculation of the boron-carbon-titanium (B-C-Ti) ternary system[J]. Journal of Phase Equilibria, 1995, 16(1):46-60.
[27] TIJO D, MASANTA M, DAS A K. In-situ TiC-TiB2 coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method:Part-I. Microstructure evolution[J]. Surface and Coatings Technology, 2018, 344:541-552.
文章导航

/