固体力学与飞行器总体设计

扑翼飞行器动力系统建模方法

  • 年鹏 ,
  • 宋笔锋 ,
  • 宣建林 ,
  • 王思琦
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 西北工业大学 长三角研究院, 太仓 215400

收稿日期: 2020-08-17

  修回日期: 2020-09-15

  网络出版日期: 2020-10-10

基金资助

科技部重点研发计划(2017YFB1300102);国家自然科学基金(11872314,U1613227)

Modeling method for propulsion system of flapping wing vehicles

  • NIAN Peng ,
  • SONG Bifeng ,
  • XUAN Jianlin ,
  • WANG Siqi
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, China

Received date: 2020-08-17

  Revised date: 2020-09-15

  Online published: 2020-10-10

Supported by

National Key Research and Development Program of China (2017YFB1300102); National Natural Science Foundation of China (11872314, U1613227)

摘要

为快速评估扑翼飞行器的航时,便于针对不同扑动翼进行动力系统设计与优化,逐步减少实物验证与试飞,加快扑翼飞行器的研制,基于实验数据参数辨识的方法建立了包含直流无刷电机、电调(ESC)、锂电池和扑动机构等扑翼飞行器动力系统组件的动态模型,其中电机模型相对误差小于10%,锂电池动态模型相对误差小于6%;提出了一种基于风洞试验气动数据和功率数据的扑动轴瞬时气动载荷半经验高精度建模方法,解决了气动载荷测量较为困难的问题,模型确定系数大于0.89;集成以上模型后的扑翼飞行器仿真系统还包含扑动翼周期平均气动模型、平尾气动模型和纵向控制模型,确保仿真在动态配平状态下进行,可进行全任务剖面航时仿真,航时仿真与实际试飞结果相比误差小于3%。集成的扑翼飞行器仿真系统采用模块化建模思想,各模型参数独立可调,能进一步应用于扑翼飞行器多学科优化等研究。

本文引用格式

年鹏 , 宋笔锋 , 宣建林 , 王思琦 . 扑翼飞行器动力系统建模方法[J]. 航空学报, 2021 , 42(9) : 224646 -224646 . DOI: 10.7527/S1000-6893.2020.24646

Abstract

Based on the experimental data parameter identification method, dynamic models of the propulsion system components of flapping wing vehicles, including brushless DC motors, Electronic Speed Controller (ESC), lithium batteries and the flapping mechanism, are established to rapidly evaluate the endurance of the flapping wing air vehicle, facilitate the design and optimization of the propulsion system for different flapping wings, gradually reduce physical verification and test flights, and speed up the development of the flapping wing air vehicle. Among these models, the relative error of the motor model is smaller than 10% and that of the lithium battery dynamic model smaller than 6%. A semi-empirical high-precision modeling method for the instantaneous aerodynamic load of the flapping shaft is proposed based on the aerodynamic data and power data of the wind tunnel experimental data, solving the aerodynamic load measurement problem with the coefficient of determination larger than 0.89. The flapping wing vehicle simulation system, which integrates the above models, also includes a cycle-averaged aerodynamic model of the flapping wing, an aerodynamic model of the horizontal tail and a longitudinal control model to ensure that the simulation was conducted in a trim state. This system can be used for full mission profile endurance simulation, with the error between endurance simulation and the test flight results smaller than 3%. Adopting the modular method, the integrated flapping wing air vehicle simulation system enables independent adjustment of the parameters in each model, providing further application to the research on multi-disciplinary optimization of the flapping wing air vehicle.

参考文献

[1] SULLIVAN T N, MEYERS M A, ARZT E. Scaling of bird wings and feathers for efficient flight[J]. Science Advances, 2019, 5(1):eaat4269.
[2] CHEN C, ZHANG T. A review of design and fabrication of the bionic flapping wing micro air vehicles[J]. Micromachines, 2019, 10(2):144.
[3] KANG C K, SHYY W. Scaling law and enhancement of lift generation of an insect-size hovering flexible wing[J]. Journal of the Royal Society, Interface, 2013, 10(85):20130361.
[4] KARÁSEK M, MUIJRES F T, DE WAGTER C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407):1089-1094.
[5] RAMEZANI A, CHUNG S J, HUTCHINSON S. A biomimetic robotic platform to study flight specializations of bats[J]. Science Robotics, 2017, 2(3):eaal2505.
[6] GERDES J, HOLNESS A, PEREZ-ROSADO A, et al. Roboraven:A flapping-wing air vehicle with highly compliant and independently controlled wings[J]. Soft Robotics, 2014, 1(4):275-288.
[7] HOLNESS A E, BRUCK H A, GUPTA S K. Characterizing and modeling the enhancement of lift and payload capacity resulting from thrust augmentation in a propeller-assisted flapping wing air vehicle[J]. International Journal of Micro Air Vehicles, 2018, 10(1):50-69.
[8] SHYY W, AONO H, CHIMAKURTHI S K, et al. Recent progress in flapping wing aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2010, 46(7):284-327.
[9] 杨文青, 宋笔锋, 宋文萍, 等. 仿生微型扑翼飞行器中的空气动力学问题研究进展与挑战[J]. 实验流体力学, 2015, 29(3):1-10. YANG W Q, SONG B F, SONG W P, et al. The progress and challenges of aerodynamics in the bionic flapping-wing micro air vehicle[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3):1-10(in Chinese).
[10] ALON TZEZANA G, BREUER K S. Thrust, drag and wake structure in flapping compliant membrane wings[J]. Journal of Fluid Mechanics, 2019, 862:871-888.
[11] XUE D, SONG B F, SONG W P, et al. Computational simulation and free flight validation of body vibration of flapping-wing MAV in forward flight[J]. Aerospace Science and Technology, 2019, 95:105491.
[12] KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird:A tailless flapping wing micro air vehicle[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012
[13] DE CROON G C H E, PERÇIN M, REMES B D W, et al. The DelFly[M]. Dordrecht:Springer Netherlands, 2016.
[14] DOMAN D B, TANG C P, REGISFORD S. Modeling interactions between flexible flapping-wing spars, mechanisms, and drive motors[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5):1457-1473.
[15] KALPATHY VENKITESWARAN V, SU H J. Optimization of mechanism design of flapping wing MAV[C]//55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2014:0573.
[16] YANG W Q, WANG L G, SONG B F. Dove:A biomimetic flapping-wing micro air vehicle[J]. International Journal of Micro Air Vehicles, 2018, 10(1):70-84.
[17] TAKASHI K, NAGAMORI S. Permanent magnet and brushless DC motors[M]. Oxford:Clarendon Press, 1985:8-9.
[18] LINDAHL P, MOOG E, SHAW S R. Simulation, design, and validation of an UAV SOFC propulsion system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3):2582-2593.
[19] 侯红胜, 刘卫国, 马瑞卿. 基于动态转矩的无刷直流电机机械特性和等效电压系数研究[J]. 西北工业大学学报, 2016, 34(6):1050-1056. HOU H S, LIU W G, MA R Q. Mechanicalcharacteristics and equivalent voltage coefficient research of BLDC motor based on the analysis of dynamic torque[J]. Journal of Northwestern Polytechnical University, 2016, 34(6):1050-1056(in Chinese).
[20] DOERFFEL D, SHARKH S A. A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries[J]. Journal of Power Sources, 2006, 155(2):395-400.
[21] TREMBLAY O, DESSAINT L A. Experimental validation of a battery dynamic model for EV applications[J]. World Electric Vehicle Journal, 2009, 3(2):289-298.
[22] NIAN P, SONG B F, YANG W Q, et al. Integrated design and analysis of an amplitude-variable flapping mechanism for FMAV[C]//Intelligent Robotics and Applications, 2017.
[23] NIAN P, SONG B F, XUAN J L, et al. Study on flexible flapping wings with three dimensional asymmetric passive deformation in a flapping cycle[J]. Aerospace Science and Technology, 2020, 104:105944.
[24] PAMADI B N. Performance,stability, dynamics, and control of airplanes[M]. 2nd ed. Reston:AIAA, 2004.
[25] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京:北京航空航天大学出版社, 2005:214-217. FANG Z P, CHEN W C, ZHANG S G. Flight dynamics of aerocraft[M]. Beijing:Beihang University Press, 2005:214-217(in Chinese).
[26] 飞机设计手册总编委会. 飞机设计手册:气动设计[M]. 北京:航空工业出版社, 2002:205-208. Aircraft Design Manual Editorial Board. Aircraft design manual:Aerodynamic design[M]. Beijing:Aviation Industry Press, 2002:205-208(in Chinese).
文章导航

/