电子电气工程与控制

基于Kriging代理模型的约束差分进化算法

  • 叶年辉 ,
  • 龙腾 ,
  • 武宇飞 ,
  • 唐亦帆 ,
  • 史人赫
展开
  • 1. 北京理工大学 宇航学院, 北京 100081;
    2. 北京理工大学 飞行器动力学与控制教育部重点实验室, 北京 100081;
    3. 清华大学 航天航空学院, 北京 100084

收稿日期: 2020-07-28

  修回日期: 2020-08-16

  网络出版日期: 2020-10-10

基金资助

国家自然科学基金(51675047);航空科学基金(2019ZC072003);中国博士后科学基金(2019M660668)

Kriging-assisted constrained differential evolution algorithm

  • YE Nianhui ,
  • LONG Teng ,
  • WU Yufei ,
  • TANG Yifan ,
  • SHI Renhe
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Key Laboratory of Dynamics and Control of Flight Vehicle of Ministry of Education, Beijing Institute of Technology, Beijing 100081, China;
    3. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

Received date: 2020-07-28

  Revised date: 2020-08-16

  Online published: 2020-10-10

Supported by

National Natural Science Foundation of China (51675047);Aeronautical Science Foundation of China (2019ZC072003);China Postdoctoral Science Foundation (2019M660668)

摘要

广泛应用的高精度分析模型使得飞行器设计优化的计算成本不断增加,为了缩短优化耗时,基于代理模型的进化算法(SAEAs)近年来得到了广泛关注。针对现有SAEAs处理约束优化问题优化效率低下的缺陷,提出了一种基于Kriging代理模型的约束差分进化算法(KRG-CDE),结合约束改善概率与最优适应度定制了一种改进的可行准则,从而提高新增样本点的潜在可行性与最优性,并根据种群改善情况,平衡算法全局探索与局部搜索性能。标准测试算例对比研究结果表明,相比于基于全局与局部代理模型的差分进化算法、(μ+λ)-约束差分进化算法,KRG-CDE算法在优化效率、全局收敛性及鲁棒性等方面具有显著优势。最后,运用KRG-CDE算法求解全电推卫星多学科设计优化问题,验证了该算法的工程实用性。

本文引用格式

叶年辉 , 龙腾 , 武宇飞 , 唐亦帆 , 史人赫 . 基于Kriging代理模型的约束差分进化算法[J]. 航空学报, 2021 , 42(6) : 324580 -324580 . DOI: 10.7527/S1000-6893.2020.24580

Abstract

High-fidelity analysis models have been widely used in modern design, significantly increasing the computational budget of engineering design optimization. To reduce the computational cost, researchers have paid extensive attention to Surrogate Assisted Evolutionary Algorithms (SAEAs) recently. A Kriging-assisted Constrained Differential Evolution algorithm (KRG-CDE) is developed in this study to improve the efficiency of SAEAs in solving constrained optimization problems. Based on constraint improvement probability and optimality fitness, an improved feasibility rule is tailored to enhance the potential optimality and feasibility of the infill sample points. Moreover, the global exploration and local exploitation capacity of the KRG-CDE are balanced according to the population improvement. The proposed method is tested on several standard benchmark problems and compared with global and local surrogate-assisted differential evolution and (μ+λ)-constrained differential evolution to verify its optimization performance. The comparison results illustrate that the KRG-CDE outperforms the competitors in terms of efficiency, convergence, and robustness. Finally, the KRG-CDE is successfully applied to an all-electric propulsion satellite multidisciplinary design optimization problem, demonstrating the practicality and effectiveness of the proposed KRG-CDE in engineering practices.

参考文献

[1] OPARA K R, ARABAS J. Differential evolution:A survey of theoretical analyses[J]. Swarm and Evolutionary Computation, 2019, 44:546-558.
[2] SHETH P D, UMBARKAR A J. Constrained optimization problems solving using evolutionary algorithms:A review[C]//2015 International Conference on Computational Intelligence and Communication Networks (CICN). Piscataway:IEEE Press, 2015.
[3] WANG Y, CAI Z. Constrained evolutionary optimization by means of (μ+λ)-differential evolution and improved adaptive trade-off model[J]. Evolutionary Computation, 2011, 19(2):249-285.
[4] DAS S, MULLICK S S, SUGANTHAN P N. Recent advances in differential evolution-an updated survey[J]. Swarm Evolutionary Computation, 2016, 27:1-30.
[5] GAO W F, YEN G G, LIU S Y. A dual-population differential evolution with coevolution for constrained optimization[J]. IEEE Transactions on Cybernetics, 2015, 45(5):1108-1121.
[6] SHI R H, LIU L, LONG T, et al. Surrogate assisted multidisciplinary design optimization for an all-electric GEO satellite[J]. Acta Astronautica, 2017, 138:301-317.
[7] 龙腾, 刘建, WANG G G, 等. 基于计算试验设计与代理模型的飞行器近似优化策略探讨[J]. 机械工程学报, 2016, 52(14):79-105. LONG T, LIU J, WANG G G, et al. Discuss on approximate optimization strategies using design of computer experiments and metamodels for flight vehicle design[J]. Journal of Mechanical Engineering, 2016, 52(14):79-105(in Chinese).
[8] JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural Multidisciplinary Optimization, 2001, 23(1):1-13.
[9] GUNST R F. Response surface methodology:Process and product optimization using designed experiments[J]. Technometrics, 1996, 38(3):284-286.
[10] BHOSEKAR A, IERAPETRITOU M G J C, ENGINEERING C. Advances in surrogate based modeling, feasibility analysis, and optimization:A review[J]. Computers & Chemical Engineering, 2018, 108:250-267.
[11] 姚裕盛, 徐开俊. 基于BP神经网络的飞行训练品质评估[J]. 航空学报, 2017, 38(S1):721513. YAO Y S, XU K J. Quality assessment of flight training based on BP neural network[J]. Acta Aeronautic et Astronautica Sinica, 2017, 38(S1):721513(in Chinese).
[12] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[13] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5):623344. HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623344(in Chinese).
[14] HAN Z H, ZHANG Y, SONG C X, et al. Weighted gradient-enhanced kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal, 2017, 55(12):4330-4346.
[15] BERTRAM A, ZIMMERMANN R. Theoretical investigations of the new Cokriging method for variable-fidelity surrogate modeling[J]. Advances in Computational Mathematics, 2018, 44(6):1693-1716.
[16] HAN Z H, GÖRTZ S. Hierarchical kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9):1885-1896.
[17] ZHAN D W, XING H L. Expected improvement for expensive optimization:A review[J/OL]. Journal of Global Optimization,(2020-07-10)[2020-08-23]. https://doi.org/10.1007/s10898-020-00923-x.
[18] JONES D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4):345-383.
[19] JIN Y C. Surrogate-assisted evolutionary computation:Recent advances and future challenges[J]. Swarm and Evolutionary Computation, 2011, 1(2):61-70.
[20] JIN Y C, WANG H D, CHUGH T, et al. Data-driven evolutionary optimization:An overview and case studies[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(3):442-458.
[21] 陶良波. 基于动态代理模型的粒子群优化算法研究[D]. 武汉:华中科技大学, 2017. TAO L B. Research on dynamic surrogate models assisted particle swarm optimization[D]. Wuhan:Huazhong University of Science and Technology, 2017(in Chinese).
[22] LIU B, ZHANG Q F, GIELEN G G E. A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(2):180-192.
[23] YU H B, TAN Y, ZENG J C, et al. Surrogate-assisted hierarchical particle swarm optimization[J]. Information Sciences, 2018, 454-455:59-72.
[24] 田杰, 谭瑛, 孙超利, 等. 代理模型辅助进化算法在高维优化问题中的应用[J]. 机械设计与制造, 2018, 12:269-272. TIAN J, TAN Y, SUN C L, et al. Surrogate-assisted evolutionary optimization for high-dimensional expensive optimization[J]. Machinery Design & Manufacture, 2018, 12:269-272(in Chinese).
[25] WANG X J, WANG G G, SONG B W, et al. A novel evolutionary sampling assisted optimization method for high-dimensional expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5):815-827.
[26] WANG Y, YIN D Q, YANG S X, et al. Global and local surrogate-assisted differential evolution for expensive constrained optimization problems with inequality constraints[J]. IEEE Transactions on Cybernetics, 2019, 49(5):1642-1656.
[27] WILD S M, SHOEMAKER C. Global convergence of radial basis function trust-region algorithms for derivative-free optimization[J]. SIAM Review, 2013, 55(2-4):349-371.
[28] DEB K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2-4):311-338.
[29] LIANG J, RUNARSSON T, MEZURA-MONTES E, et al. Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization[J]. Journal of Applied Mechanics, 2006, 41(8):8-31.
[30] REGIS R G. Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3):326-347.
[31] CAI X W, QIU H B, GAO L, et al. Metamodeling for high dimensional design problems by multi-fidelity simulations[J]. Structural and Multidisciplinary Optimization, 2017, 56(1):151-166.
文章导航

/