[1] ZHU L, JIANG B, CHENG Y. Life prediction methods based on data-driven:Review and trend[C]//2016 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway:IEEE Press,2016:1682-1686.
[2] WU X D, ZHU Z Y, FAN S S, et al. Failure and reliability prediction of engine systems using iterated nonlinear filters based state-space least square support vector machine method[J]. Optik-International Journal for Light and Electron Optics, 2016,127(3):1491-1496.
[3] 高大为, 朱永生, 刘煜炜,等. 一种滚动轴承特征频率的自动识别方法研究[J]. 振动与冲击, 2017, 36(9):58-62. GAO D W, ZHU Y S, LIU Y W, et al. A method for automatic recognition of characteristic frequency of rolling bearing[J]. Journal of Vibration and Shock, 2017, 36(9):58-62(in Chinese).
[4] THIABGOH O, EGGERS T, JIANG S D, et al. Condition monitoring and failure prediction of gear rotation using a contactless RF magnetic sensor[J]. Journal of Electronic Materials, 2019, 48(6):4000-4006.
[5] GAO Z, MA C, SONG D, et al. Deep quantum inspired neural network with application to aircraft fuel system fault diagnosis[J]. Neurocomputing, 2017, 238:13-23.
[6] WIDODO A, KIM E Y, SON J D, et al. Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine[J]. Expert Systems with Applications, 2009, 36(3):7252-7261.
[7] LIU C, SUN J Z, WANG F Y, et al. Bayesian network method for fault diagnosis of civil aircraft environment control system[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2020, 234(5):662-674.
[8] 李晓白, 崔秀伶, 郎荣玲. 航空发动机性能参数预测方法[J]. 北京航空航天大学学报, 2008, 34(3):253-256. LI X B, CUI X L, LANG R L. Performance parameter prediction method of aero engine[J]. Journal of Beijing university of aeronautics and astronautics, 2008, 34(3):253-256(in Chinese).
[9] VICTOR H J, JAMES R, OTTEWILL R D, et al. Condition monitoring of distributed systems using two-stage Bayesian inference data fusion[J]. Mechanical Systems and Signal Processing, 2017,87(Part A):91-111.
[10] 胡金海, 夏超, 彭靖波, 等. 一种基于相邻模块化加权D-S的融合诊断方法[J].航空学报,2016,37(4):1174-1183. HU J H, XIA C, PENG J B, et al. A fusion diagnosis method based on adjacent modular weighted D-S[J]. Acta Aeronautica et Astronautica Sinica, 2016,37(4):1174-1183(in Chinese).
[11] JI C Z, LU S Q. Application of improved rough set reduction algorithm in on-line fault diagnosis of chemical equipment[J]. Chemical Engineering Transactions, 2018, 71:1285-1290.
[12] 卫芬. 旋转机械多传感器信息融合智能故障诊断关键技术研究[D].哈尔滨:哈尔滨工业大学,2018. WEI F. Research on the key technology of intelligent fault diagnosis of rotating machinery with multi-sensor information fusion[D]. Harbin:Harbin Industrial University, 2018(in Chinese).
[13] 张磊, 李行善, 于劲松,等. 一种基于高斯混合模型粒子滤波的故障预测算法[J]. 航空学报, 2009, 30(2):319-324. ZHANG L, LI X S, YU J S, et al. A fault prediction algorithm based on gaussian mixture model particle filter is presented[J]. Acta Aeronautica et Astronautica Sinica,2009, 30(2):319-324(in Chinese).
[14] LIU Q, DONG M, LV W, et al. A novel method using adaptive hidden semi-Markov model for multi-sensor monitoring equipment health prognosis[J]. Mechanical Systems & Signal Processing, 2015, 64-65:217-232.
[15] FARZANEH A, JAN L. Remaining useful life estimation:Review[J]. International Journal of System Assurance Engineering & Management, 2014, 5(4):461-474.
[16] 王浩伟, 滕克难, 李军亮. 随机环境应力冲击下基于多参数相关退化的导弹部件寿命[J]. 航空学报,2016, 37(11):3404-3412. WANG H W, TENG K N, LI J L. Lifetime prediction for missile components based on multiple parameters correlative degrading with random shocks of environmental stresses[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3404-3412
[17] 任子强, 司小胜, 胡昌华, 等. 融合多传感器数据的发动机剩余寿命预测方法[J]. 航空学报,2019,40(12):223312 REN Z Q, Sl X S, HU C H, et al. Remaining useful life prediction method for engine combining multi-sensors data[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):223312(in Chinese).
[18] 王玺, 胡昌华, 任子强,等. 基于非线性Wiener过程的航空发动机性能衰减建模与剩余寿命预测[J]. 航空学报,2020,41(2):223291 WANG X, HU C H, REN Z Q, et al. Performance degradation modeling and remaining useful life prediction for aero-engine based on nonlinear Wiener process[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):223291(in Chinese).
[19] WEN Y X,WU J G,DEVASHISH D,et al.Degradation modeling and RUL prediction using wiener process subject to multiple change points and unit heterogeneity[J]. Reliability Engineering and System Safety, 2018, 176:113-124.
[20] DONG G Z, CHEN Z H, WEI J W, et al. Battery health prognosis using brownian motion modeling and particle filtering[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11):8646-8655.
[21] SI X S,WANG W B,CHEN U Y, et al. A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution[J]. European Journal of Operational Research, 2013, 226(1):53-66.
[22] SI X S, WANG W, HU C H, et al. Remaining useful life estimation based on a nonlinear diffusion degradation process[J]. IEEE Transactions on Reliability, 2012, 61(1):50-67.
[23] DEMPSTER A. Maximum likelihood from incomplete data vie the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, 39(1):1-38.
[24] HUANG C L, ZHANG X P, WANG F, Approaches in using expectation maximization algorithm for maximum likelihood estimation of the parameters of a constrained state space model with an external input series[J]. Computer Science and Information Technology, 2016, 6(5):57-64.
[25] LI B B, AU S S. An expectation-maximization algorithm for Bayesian operational modal analysis with multiple (possibly close) modes[J]. Mechanical Systems and Signal Processing, 2019, 132:490-511.
[26] SAXENA A, KAI G, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//International Conference on Prognostics and Health Management. Piscataway:IEEE Press, 2008:1-9.