论文

激光冲击强化7075铝合金熔焊接头的疲劳性能

  • 王连庆 ,
  • 胡雅楠 ,
  • 车志刚 ,
  • 吴圣川
展开
  • 1. 北京科技大学 新金属材料国家重点实验室, 北京 100083;
    2. 西南交通大学 牵引动力国家重点实验室, 成都 610031;
    3. 中国航空制造技术研究院 高能束流加工技术重点实验室, 北京 100024;
    4. 中国航空制造技术研究院 先进表面工程技术航空科技重点实验室, 北京 100024

收稿日期: 2020-06-01

  修回日期: 2020-09-16

  网络出版日期: 2020-10-10

基金资助

国家自然科学基金大科学装置联合基金培育项目(U2032121);国家自然科学基金(5187051990);民用飞机专项科研项目(MJ-2016-F-16)

Fatigue performance of laser shock processed fusion welded 7075 Al alloy

  • WANG Lianqing ,
  • HU Ya'nan ,
  • CHE Zhigang ,
  • WU Shengchuan
Expand
  • 1. State Key Laboratory for Advanced Metals & Materials, University of Science and Technology Beijing, Beijing 100083, China;
    2. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China;
    3. Science and Technology on Power Beam Processes Laboratory, AVIC Manufacturing Technology Institute, Beijing 100024, China;
    4. Aviation Key Laboratory of Science and Technology on Advanced Surface Engineering, AVIC Manufacturing Technology Institute, Beijing 100024, China

Received date: 2020-06-01

  Revised date: 2020-09-16

  Online published: 2020-10-10

Supported by

Large-scale Scientific Facility of National Natural Science Foundation of China (U2032121); National Natural Science Foundation of China (5187051990); Special Research Project of Civil Aircraft (MJ-2016-F-16)

摘要

激光冲击强化(LSP)技术具有残余压应力场深、冷作硬化程度低和强化区域可控等优点,在焊接结构表面改性方面应用前景广阔。对2 mm厚度的7075-T6铝合金激光-电弧复合焊接接头实施了激光冲击强化处理,对比分析了强化前后接头的硬度、残余应力、疲劳寿命以及疲劳裂纹形核机制。结果表明,焊缝中心的最高硬度由强化前的152 HV提高到强化后的175 HV,有效强化层深度约为100 μm;经激光冲击强化后,焊缝区呈现残余压缩应力,最大残余压应力为-200 MPa;9组焊接接头试样的平均疲劳寿命为675 937周,约为强化前疲劳寿命(262 297周)的2.6倍;疲劳裂纹萌生位置从具有高度应力集中的表面缺陷转移至强化层以下的亚表面,进而有效地提高了疲劳裂纹的形核寿命。

本文引用格式

王连庆 , 胡雅楠 , 车志刚 , 吴圣川 . 激光冲击强化7075铝合金熔焊接头的疲劳性能[J]. 航空学报, 2021 , 42(5) : 524320 -524320 . DOI: 10.7527/S1000-6893.2020.24320

Abstract

Laser Shock Processing (LSP) offers deep compressive residual stress layers, low cold work hardening and flexible strengthening regions, drawing extensive attention in surface modification of welded structures. This study examines 2 mm thick 7075-T6 laser-arc hybrid welded joints treated by LSP. The hardness, residual stresses, fatigue life and fatigue crack initiation mechanism of the welded joints before and after LSP are investigated. It is found that the highest hardness in the weld zone increases from 152 HV before LSP to 175 HV after LSP. The effective strengthening layer depth is around 100 μm. The weld zone influenced by LSP is primarily characterized by residual compressive stress, with the highest compressive stress value of -200 MPa. The average fatigue life of nine welded joints subjected to LSP is around 675 937 cycles, approximately 2.6 times the fatigue life of those without LSP (262 297 cycles). The fatigue crack nucleation site is transferred from surface defects with high stress concentration to the subsurface below the strengthening layer, leading to improved fatigue crack initiation life.

参考文献

[1] WU S C, HU Y N, DUAN H, et al. On the fatigue performance of laser hybrid welded high Zn 7000 alloys for next generation railway components[J]. International Journal of Fatigue, 2016, 91:1-10.
[2] WU S C, HU Y N, SONG X P, et al. On the microstructural and mechanical characterization of hybrid laser-welded Al-Zn-Mg-Cu alloys[J]. Journal of Materials Engineering and Performance, 2015, 24(4):1540-1550.
[3] DHAKAL B, SWAROOP S. Review:Laser shock peening as post welding treatment technique[J]. Journal of Manufacturing Processes, 2018, 32:721-733.
[4] 苟磊, 马玉娥, 杜永, 等. 7050凹槽铝板激光冲击强化残余应力分布与疲劳寿命[J]. 航空学报, 2019, 40(12):423096. GOU L, MA Y E, DU Y, et al. Residual stress profile and fatigue life of 7050 aluminum plate with groove under laser shot peening[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):423096(in Chinese).
[5] 高玉魁, 仲政, 雷力明. 激光冲击强化和喷丸强化对FGH97高温合金疲劳性能的影响[J]. 稀有金属材料与工程, 2016, 45(5):1230-1234. GAO Y K, ZHONG Z, LEI L M. Influence of laser peening and shot peening on fatigue properties of FGH97 superalloy[J]. Rare Metal Materials and Engineering, 2016, 45(5):1230-1234(in Chinese).
[6] 邹世坤, 王健, 王华明. 激光冲击处理对焊接接头力学性能的影响(I)[J]. 焊接学报, 2001, 22(3):79-81. ZOU S K, WANG J, WANG H M. The effects of laser shock processing on mechanical properties of welded joints (I)[J]. Transactions of the China Welding Institution, 2001, 22(3):79-81(in Chinese).
[7] 罗密, 罗开玉, 王庆伟, 等. 激光冲击7075-T6铝合金焊缝的残余应力场数值模拟[J]. 光学学报, 2014, 34(4):0414003. LUO M, LUO K Y, WANG Q W, et al. Numerical simulation of laser shock peening on residual stress field of 7075-T6 aluminum alloy welding[J]. Acta Optica Sinica, 2014, 34(4):0414003(in Chinese).
[8] LIU P, SUN S Y, HU J Y. Effect of laser shock peening on the microstructure and corrosion resistance in the surface of weld nugget zone and heat-affected zone of FSW joints of 7050 Al alloy[J]. Optics and Laser Technology, 2019, 112:1-7.
[9] 吴圣川,朱宗涛,李向伟. 铝合金的激光焊接及性能评价[M]. 北京:国防工业出版社, 2014. WU S C, ZHU Z T, LI X W. Laser welding of aluminum alloys and the performance evaluation[M]. Beijing:National Defense Industry Press, 2014(in Chinese).
[10] SUN G, FANG X, TONG Z, et al. Effect of laser shock peening on aluminum alloy laser-welds[J]. Surface Engineering, 2016, 32(12):942-948.
[11] 苏纯, 周建忠, 黄舒, 等. 激光冲击强化对6061-T6铝合金TIG焊接接头疲劳性能的影响[J]. 激光与光电子进展, 2015, 52:061403. SU C, ZHOU J Z, HUANG S, et al. Influence of laser shock processing on fatigue properties of 6061-T6 aluminum alloy TIG welded joints[J]. Laser & Optoelectronics Progress, 2015, 52:061403(in Chinese).
[12] 徐国建, 钟立明, 王虹, 等. 激光冲击强化铝合金焊接接头的性能[J]. 中国激光, 2014, 41(6):0603007. XU G J, ZHONG L M, WANG H, et al. Performance of aluminum alloy welded joints by laser shock processing[J]. Chinese Journal of Lasers, 2014, 41(6):0603007(in Chinese).
[13] MONTROSS C S, WEI T, YE L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys:A review[J]. International Journal of Fatigue, 2002, 24:1021-1036.
[14] 曹子文, 车志刚, 邹世坤, 等. 激光冲击强化对7050铝合金紧固孔疲劳性能的影响[J]. 应用激光, 2013, 33(3):259-262. CAO Z W, CHE Z G, ZOU S K, et al. The effect of laser shock peening on fatigue property of 7050 aluminum alloy fastener hole[J]. Applied Laser, 2013, 33(3):259-262(in Chinese).
[15] HATAMLEH O, LYONS J, FORMAN R. Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints[J]. International Journal of Fatigue, 2007, 29:421-434.
[16] 王声波, 范勇, 吴鸿兴, 等. 7050航空铝合金结构材料激光冲击强化处理研究[J]. 中国激光, 2004,31(1):125-128. WANG S B, FAN Y, WU H X, et al. Research on strengthening 7050 aerial aluminum alloy structural material with laser shock processing[J]. Chinese Journal of Lasers, 2004, 31(1):125-128(in Chinese).
[17] 罗新民, 陈康敏, 张静文, 等. 纯Al和铝合金激光冲击表面改性的位错机制[J]. 金属学报, 2013,49(6):667-674. LUO X M, CHEN K M, ZHANG J W, et al. Dislocation mechanism of surface modification for commercial purity aluminum and aluminum alloy by laser shock processing[J]. Acta Metallurgica Sinca, 2013, 49(6):667-674(in Chinese).
[18] WANG Y N, KYSAR J W, YAO Y L. Analytical solution of anisotropic plastic deformation induced by micro-scale laser shock peening[J]. Mechanics of Materials, 2008, 40(3):100-114.
[19] FAIRAND B P, WILCOX B A, GALLAGHER W J. Laser shocking-induced microstructural and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics, 1972, 43(9):3893-3895.
[20] DING K, YE L. Laser shock peening, performance and process simulation[M]. Boca Raton:CRC Press, 2006.
[21] 谢灿军, 童明波, 刘富, 等. 7075-T6铝合金动态力学试验及本构模型研究[J]. 振动与冲击, 2014, 33(18):110-114. XIE C J, TONG M B, LIU F, et al. Dynamic tests and constitutive model for 7075-T6 aluminum alloy[J]. Journal of Vibration and Shock, 2014, 33(18):110-114(in Chinese).
[22] CHE Z G, GONG S L, CAO Z W, et al. Theory analysis and experiment investigation of laser shock processing on titanium alloy blade[J]. Rare Metal Materials and Engineering, 2011, 40(S4):235-239.
[23] FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2):775-784.
[24] LU J Z, LUO K Y, ZHANG Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11):3984-3994.
[25] 徐士东, 任旭东, 周王凡, 等. GH2036合金激光冲击胞-晶细化与位错强化机理研究[J]. 中国激光, 2016, 43(1):0103001. XU S D, REN X D, ZHOU W F, et al. Research of cell-grain refinement and dislocation strengthening of laser shock processing on GH2036 alloy[J]. Chinese Journal of Lasers, 2016, 43(1):0103001(in Chinese).
[26] 吴圣川,胡雅楠,康国政. 材料疲劳损伤行为的先进光源表征技术[M]. 北京:科学出版社, 2018:26. WU S C, HU Y N, KANG G Z. Characterization of materials fatigue damage via advanced light source tomography[M]. Beijing:China Science Publishing & Media Ltd., 2018:26(in Chinese).
[27] 张宏,唐亚新,余承业,等. 铝合金激光冲击表面强化试验研究[J]. 航空学报,1997, 18(1):248-251. ZHANG H, TANG Y X, YU C Y, et al. Experimental study strengthening of alminium alloy by laser shocking[J]. Acta Aeronautica et Astronautica Sinca, 1997, 18(1):248-251(in Chinese).
[28] ZHANG W W, NOYAN I C, YAO Y L. Microscale laser shock peening of thin films, Part 1:Experiment, modeling and simulation[J]. Journal of Manufacturing Science and Engineering, 2004, 126(1):10-17.
[29] TAN Y, WU G, YANG J M, et al. Laser shock peening on fatigue crack growth behavior of aluminum alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 27:649-656.
[30] 郭广平, 丁传富. 航空材料力学性能检测[M]. 北京:机械工业出版社, 2017:236. GUO G P, DING C F. Mechanical testing of aeronautical materials[M]. Beijing:China Machine Press, 2017:236(in Chinese).
文章导航

/