针对实际结构有限元模型(FEM)的建模误差通常仅存在于局部区域,提出了一种对局部结构单独进行模型修正的方法。首先,根据频响函数(FRF)解耦理论得到由残余结构频响函数与包含待修正参数的局部结构动刚度所重构的整体结构频响函数的拟合值,然后通过迭代优化使其与测量值的残差最小化,从而得到参数的极大似然估计。在此基础上,将残差关于参数的灵敏度以局部结构动力学矩阵表示,建立了模型修正的基本方程,利用整体结构的测试数据即可直接对分离出来的局部结构进行模型修正。最后,对喷气式飞机和三角机翼飞机分别进行了数值模拟和实验研究,验证了所提方法的可行性和有效性。结果表明,所提方法可以成功地用于仅局部区域含有建模误差的实际结构有限元模型的修正,修正后的有限元模型的动态特性与实际结构有较好的一致性。
For an actual structure, the modeling errors of the Finite Element Model(FEM) often only exist in some local area. A model updating method is presented to update the local structures. Firstly, according to the Frequency Response Function (FRF) decoupling method, the fitting FRF of the global structure is reconstructed from the residual structure FRF and the local structure dynamic stiffness including the parameters to be updated. Then, the iterative optimization process of maximum likelihood estimation is carried out to get the parameters minimizing the residual error between the fit value and the measured value. On this basis, the sensitivity of the residual error to the parameters is represented by the dynamic matrix of the local structure, and the fundamental equation for model updating is constructed. The measured FRF of the global structure is utilized to update the FEM of the separated local structure directly. Finally, numerical simulation of a jet plane and experimental investigation of the delta-winged aircraft are performed to validate the feasibility and efficiency of the present method. The obtained results show that the proposed method can be successfully used to update the model of the actual structure with modeling errors only in the local area, achieving a good agreement between the dynamic properties of the updated FEM and the actual structure.
[1] 张令弥. 动态有限元模型修正技术及其在航空航天结构中的应用[J]. 强度与环境, 1994(2):10-17. ZHANG L M. Dynamic finite element model updating and its application in aerospace structures[J]. Structure & Environment Engineering, 1994(2):10-17(in Chinese).
[2] YUAN P P, REN W X, ZHANG J. Dynamic tests and model updating of nonlinear beam structures with bolted joints[J]. Mechanical Systems and Signal Processing, 2019, 126:193-210.
[3] JHA A K, DEWANGAN P, SARANGI M. Model updating of rotor systems by using nonlinear least square optimization[J]. Journal of Sound & Vibration, 2016, 373:251-262.
[4] MODAK S V, KUNDRA T K, NAKRA B C. Comparative study of model updating methods using simulated experimental data[J]. Computers & Structures, 2002, 80(5-6):437-447.
[5] 彭珍瑞, 曹明明, 刘满东. 基于加速度频响函数小波分解的模型修正方法[J]. 航空学报, 2020, 41(7):223548. PENG Z R, CAO M M,LIU M D. A model updating method based on wavelet decomposition of acceleration frequency response function[J]. Acta Aeronautica et Astronautica Sinica,2020, 41(7):223548(in Chinese).
[6] ESFANDIARI A. Structural model updating using incomplete transfer function of strain data[J]. Journal of Sound & Vibration, 2014, 333(16):3657-3670.
[7] HOFMEISTER B, BRUNS M, ROLFES R. Finite element model updating using deterministic optimisation:A global pattern search approach[J]. Engineering Structures, 2019, 195:373-381.
[8] NGAN J W, CAPRANI C C, BAI Y. Full-field finite element model updating using zernike moment descriptors for structures exhibiting localized mode shapes[J]. Mechanical Systems and Signal Processing, 2019, 121:373-388.
[9] 费庆国, 张令弥, 李爱群, 等. 基于统计分析技术的有限元模型修正研究[J]. 振动与冲击, 2005, 24(3):23-26. FEI Q G, ZHANG L M, LI A Q, et al. Study on finite element model updating based on statistical analysis technology[J]. Journal of Vibration and Shock, 2005, 24(3):23-26(in Chinese).
[10] SESTIERI A, D'AMBROGIO W. Why be modal:How to avoid the use of modes in the modification of vibrating systems[J]. International Journal of Analytical and Experimental Modal Analysis, 1989, 26(4):25-30.
[11] WEISSENBURGER J T. Effect of local modifications on the vibration characteristics of linear systems[J]. Journal of Applied Mechanics, 1968, 35(2):327-322.
[12] ZHU D P, DONG X J, WANG Y, et al. Substructure stiffness and mass updating through minimization of modal dynamic residuals[J]. Journal of Engineering Mechanics, 2016, 142(5):04016013.
[13] 翁顺, 左越, 朱宏平, 等. 基于子结构的有限元模型修正方法[J]. 振动与冲击, 2017, 36(4):100-104. WENG S,ZUO Y,ZHU H P, et al. Model updating based on a substructuring method[J]. Journal of Vibration and Shock, 2017, 36(4):100-104(in Chinese).
[14] GUO N, YANG Z C, LE W, et al. A updating method using strain frequency response function with emphasis on local structure[J]. Mechanical Systems and Signal Processing, 2019, 115:637-656.
[15] WANG M, WANG D, ZHENG G. Joint dynamic properties identification with partially measured frequency response function[J]. Mechanical Systems and Signal Processing, 2012, 27:499-512.
[16] D'AMBROGIO W, FREGOLENT A. Substructure decoupling without using rotational DOFs:Fact or fiction?[J]. Mechanical Systems and Signal Processing, 2016, 72-73:499-512.
[17] DAMJAN C, MIHA B. Identification of the dynamic properties of joints using frequency-response functions[J]. Journal of Sound and Vibration, 2008, 317(1-2):158-174.
[18] JETMUNDSEN B, BIELAWA R L, FLANNELLY W G. Generalized frequency domain substructure synthesis[J]. Journal of the American Helicopter Society, 1988, 33(1):55-64.
[19] TOL S, OZGUVEN H N. Dynamic characterization of bolted joints using FRF decoupling and optimization[J]. Mechanical Systems and Signal Processing, 2015, 54-55:124-138.
[20] 王彤, 张令弥. 计及随机噪声的频域多输入多输出模态参数识别[J]. 航空学报, 2004, 25(6):560-564. WANG T, ZHANG L M. Freguency domain multiple input/output modal parameters identification with consideration of stochastic noise[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(6):560-564(in Chinese).
[21] PU Q H, HONG Y, CHEN L J, et al. Model updating-based damage detection of a concrete beam utilizing experimental damped frequency response functions[J]. Advances in Structural Engineering,2019, 22(4):935-947.
[22] GANG X Y, CHAI S, ALLEMANG R J, et al. A new iterative model updating method using incomplete frequency response function data[J]. Journal of Sound and Vibration, 2014, 333(9):2443-2453.
[23] 王缅. 有限元动力学宽频带计算与连接结构实验建模方法研究[D]. 北京:清华大学, 2011:56-73. WANG M. Broadband dynamic computation and experimental connenction modelling with finite element method[D]. Beijing:Tsinghua University, 2011:56-73(in Chinese).
[24] PEETERS P, MANZATO S, TAMAROZZI T, et al. Reducing the impact of measurement errors in FRF-based substructure decoupling using a modal model[J]. Mechanical Systems and Signal Processing, 2018, 99:384-402.