复合材料与金属材料混合多钉连接形式是当代飞机结构中最常见的连接形式,因此对于混合多钉连接件疲劳性能的研究有助于提高对飞机结构疲劳损伤的认知。针对以Ti-6Al-4V钛合金为螺栓的ZT7H/QY9611碳纤维增强树脂基复合材料连接板与30CrMnSiNi2A金属连接板混合多钉连接结构进行数值分析和试验研究。利用有限元方法,分别对复合材料和紧固件进行疲劳损伤预测,估算复合材料连接板上螺栓孔附近的损伤,依据复合材料和紧固件的损伤量所占权重,提出了以紧固件分布和复合材料连接板铺层层数为参数的经验公式,进而有效提高混合多钉连接结构疲劳寿命的预测精度。利用试验结果将螺栓孔损伤形式进行分类讨论,探索混合多钉连接件的损伤演化方式;利用C扫描技术得到复合材料分层损伤结果,与模拟结果进行对比分析,进一步解释了模型的合理性。与试验结果对比可以看到,考虑损伤权重的寿命预测值与试验值的对数误差仅为1.1%,相对于不考虑损伤权重方法的8.4%的对数误差,该模型寿命预测精度显著提高。
The composite and metal material hybrid multi-bolted joints are the most common connection form in contemporary aircraft structures. Research on the fatigue performance of the hybrid multi-bolted joints helps to improve the understanding of the aircraft structure fatigue damage. A numerical analysis and an experimental study on the multi-nail connection structure of the ZT7H/QY9611 carbon fiber reinforced resin matrix composite plate and the 30CrMnSiNi2A metal plate with Ti-6Al-4V titanium alloy as bolts are conducted. The finite element method is used to predict the fatigue damage of the composite materials and fasteners, respectively, and simulate the damage near the nail holes on the composite material plate. An empirical formula with the distribution of fasteners and the number of layers of the composite material plate as parameters is proposed to accurately estimate the damage weight of the composite materials and fasteners, thereby effectively improving the accuracy of fatigue life prediction of hybrid multi-bolted joint structures. Through categorization and discussion of the damage patterns of nail holes based on the experimental results, the damage evolution of hybrid multi-nail connectors is explored; C-scan technology is adopted to detect layered damage of the composite materials which is compared with the simulation results to further verify the model. Compared with the experiment value, the logarithmic error of the life prediction simulation value considering the damage weight is only 1.1%, which is a significant increase from 8.4% of the method without considering the damage weight.
[1] MAO H, MAHADEVAN S. Fatigue damage modelling of composite materials[J]. Composite Structures, 2002, 58(4):405-410.
[2] PLUMTREE A, SHEN G. Prediction of fatigue damage development in unidirectional long fibre composites[J]. Polymers and Polymer Composites, 1994, 2(2):83-90.
[3] EPAARACHCHI J A, CLAUSEN P D. A new cumulative fatigue damage model for glass fibre reinforced plastic composites under step/discrete loading[J]. Composites Part A, 2005, 36(9):1236-1245.
[4] WU F Q, YAO W X. A model of the fatigue life distribution of composite laminates based on their static strength distribution[J]. Chinese Journal of Aeronautics, 2008, 21(3):241-246.
[5] 刘建明, 万小朋, 赵美英. 层合板螺栓连接结构疲劳寿命预测[J]. 航空学报, 2015, 36(6):1867-1875. LIU J M, WAN X P, ZHAO M Y. Fatigue life prediction of laminated bolted joint structures[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1867-1875(in Chinese).
[6] MARIAM M, AFENDI M, MAJID M S A, et al. Tensile and fatigue properties of single lap joints of aluminium alloy/glass fibre reinforced composites fabricated with different joining methods[J]. Composite Structures, 2018, 200:647-658.
[7] HART-SMITH L J. Mechanically-fastened joints for advanced composites-Phenomenological considerations and simple analyses[M]//Fibrous Composites in Structural Design. Boston:Springer-Verlag US, 1980:543-574.
[8] YAN Y, WEN W D, CHANG F K, et al. Experimental study on clamping effects on the tensile strength of composite plates with a bolt-filled hole[J]. Composites Part A:Applied Science and Manufacturing, 1999, 30(10):1215-1229.
[9] KRETSIS G, MATTHEWS F L. The strength of bolted joints in glass fibre/epoxy laminates[J]. Composites, 1985, 16(2):92-102.
[10] KAM C Y. Bolt hole growth in graphite-epoxy laminates for clearance and interference fits when subjected to fatigue loads[M]//Fatigue of Fibrous Composite Materials. West Conshohocken:ASTM International, 1981:21-30.
[11] 程小全, 邹健, 张纪奎, 等. 缝合复合材料可用性——含孔层合板的疲劳性能[J]. 航空学报, 2009, 30(5):867-871. CHENG X Q, ZOU J, ZHANG J K, et al. Properties of stitched composite laminates-Fatigue performance of composite laminates with an open-hole[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5):867-871(in Chinese).
[12] 王丹勇. 层合板接头损伤失效与疲劳寿命研究[D]. 南京:南京航空航天大学, 2006:32-59. WANG D Y. Research on prediction of damage failure and fatigue life for composite bolted joints[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2006:32-59(in Chinese).
[13] 袁林. 复合材料多钉连接载荷谱处理技术[D]. 西安:西北工业大学, 2020:54-64. YAN L. Treatment technology of fatigue load spectrum for composite structures with multi-bolted joints[D]. Xi'an:Northwestern Polytechnical University, 2020:54-64(in Chinese).
[14] 余明.复合材料结构疲劳损伤扩展数值仿真与寿命分析[D]. 西安:西北工业大学, 2011:54-57. YU M. Numerical simulation of fatigue damage propagation and life prediction for composite structures[D]. Xi'an:Northwestern Polytechnical University, 2011:54-57(in Chinese).
[15] 苏睿. 复合材料-钛合金机械连接结构疲劳寿命预测研究[D]. 上海:上海交通大学, 2013:15-24. SU R. Study on the life prediction of composite-to-titanium bolted joints[D]. Shanghai:Shanghai Jiao Tong University, 2013:15-24(in Chinese).
[16] WANG S N, LI Y, QIN J B, et al. Experimental study on fatigue crack growth and residual strength of steel 30CrMnSiNi2A under mixed corrosive environments[J]. Advanced Materials Research, 2008, 33-37:261-266.
[17] PAPANIKOS P, TSERPES K I, PANTELAKIS S P. Modelling of fatigue damage progression and life of CFRP laminates[J]. Fatigue Fracture Engineering Material Structure, 2003, 26(1):37-47.
[18] HASHIN Z, ROTEM A. A cumulative damage theory of fatigue failure[J]. Materials Science and Engineering, 1978, 34(2):147-160.
[19] 张文姣. 纤维增强复合材料的疲劳损伤模型及分析方法[D]. 哈尔滨:哈尔滨工业大学, 2015:5-19. ZHANG W J. Fatigue damage modelling and analysis for fiber reinforced composite materials[D]. Harbin:Harbin Institute of Technology, 2015:5-19(in Chinese).
[20] 《中国航空材料手册》编委会. 中国航空材料手册, 第4卷[M]. 北京:中国标准出版社, 2001:116-120. Editorial Board of China Aeronautical Materials Handbook. China aeronautical materials handbook, Vol.4[M]. Beijing:Standards Press of China, 2001:116-120(in Chinese).