电子电气工程与控制

基于Agent模型的机场网络延误预测

  • 王春政 ,
  • 胡明华 ,
  • 杨磊 ,
  • 赵征 ,
  • 单晶
展开
  • 1. 南京航空航天大学 民航学院, 南京 211106;
    2. 国家空管飞行流量管理技术重点实验室, 南京 211106

收稿日期: 2020-08-05

  修回日期: 2020-09-02

  网络出版日期: 2020-09-17

基金资助

国家自然科学基金(61903187);江苏省自然科学基金(BK20190414)

Airport network delay prediction based on Agent model

  • WANG Chunzheng ,
  • HU Minghua ,
  • YANG Lei ,
  • ZHAO Zheng ,
  • SHAN Jing
Expand
  • 1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
    2. National Key Laboratory of Air Traffic Flow Management, Nanjing 211106, China

Received date: 2020-08-05

  Revised date: 2020-09-02

  Online published: 2020-09-17

Supported by

National Natural Science Foundation of China (61903187); Natural Science Foundation of Jiangsu Prov-ince (BK20190414)

摘要

准确可靠的机场网络航班延误预测是科学认知空中交通运行态势,动态精准实施国家空域系统容流协同调配策略的重要依据。提出了基于Agent的机场网络延误模型,表征机场网络系统中各元素及子系统间的交互作用下的延误特征涌现。针对机场节点动态容量、预计起飞时间、最小飞行与周转时间等Agent模型中的关键参数,适应性选用了贝叶斯估计、模糊k近邻等数据挖掘方法建立参数模型,并采用2015—2017年全美历史航班和气象数据进行训练学习。为综合评价模型性能及泛化能力,选取全美2018年3个不同延误程度的典型日进行测试。实验结果表明,在全美34个核心机场组成的网络中,各节点在4小时预测区间内延误最大误差不过27.9 min,其中约80%的节点误差小于5 min,验证了所提延误预测模型在时空范围内的准确性和稳健性特征。另外,通过与其他模型对比,展示了本模型优良的延误预测性能。

本文引用格式

王春政 , 胡明华 , 杨磊 , 赵征 , 单晶 . 基于Agent模型的机场网络延误预测[J]. 航空学报, 2021 , 42(7) : 324604 -324604 . DOI: 10.7527/S1000-6893.2020.24604

Abstract

Accurate and reliable airport network flight delay prediction is an important basis for scientifically understanding the air traffic situation and dynamically and accurately implementing the national airspace system capacity coordination strategy. This paper proposes an Agent airport network delay model, characterizing the emergence of delay characteristics under the interaction between elements and subsystems in the airport network system. Several data mining algorithms were selected to estimate key parameters in the Agent model such as the dynamic capacity of airport nodes, estimated departure time, minimum flight, and turnaround time. The 2015-2017 American national historical flight and weather data for training and learning were used to train these parameter models. To comprehensively evaluate the model performance and generalization ability, three typical days with different delays in the United States in 2018 were selected for testing. The experimental results show that in the network composed of 34 core airports in the United States, the maximum delay error of each node in the 4-hour prediction interval is only 27.9 minutes, and about 80% of the node errors are less than 5 minutes, verifying the accuracy and robustness of the proposed delay prediction model in the space-time range. Comparison with other models further demonstrates the excellent delay prediction performance of our model.

参考文献

[1] STERNBERG A, SOARES J, CARVALHO D, et al. A review on flight delay prediction[EB/OL].arXiv:1703.06118,2017.
[2] 李俊生, 丁建立. 基于贝叶斯网络的航班延误传播分析[J]. 航空学报, 2008, 29(6):1598-1604. LI J S, DING J L. Analysis of flight delay propagation using Bayesian networks[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1598-1604(in Chinese).
[3] 徐涛, 丁建立, 顾彬, 等. 基于增量式排列支持向量机的机场航班延误预警[J]. 航空学报, 2009, 30(7):1256-1263. XU T, DING J L, GU B, et al. Forecast warning level of flight delays based on incremental ranking support vector machine[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7):1256-1263(in Chinese).
[4] 罗赟骞, 陈志杰, 汤锦辉, 等. 采用支持向量机回归的航班延误预测研究[J]. 交通运输系统工程与信息, 2015, 15(1):143-149, 172. LUO Y Q, CHEN Z J, TANG J H, et al. Flight delay prediction using support vector machine regression[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(1):143-149, 172(in Chinese).
[5] 罗谦, 张永辉, 程华, 等. 基于航空信息网络的枢纽机场航班延误预测模型[J]. 系统工程理论与实践, 2014, 34(S1):143-150. LUO Q, ZHANG Y H, CHENG H, et al. Study on flight delay prediction model based on flight networks[J]. Systems Engineering-Theory & Practice, 2014, 34(S1):143-150(in Chinese).
[6] 陈海燕, 王建东, 徐涛. 基于延误波及的航班延误状态空间模型[J]. 信息与控制, 2012, 41(2):251-255. CHEN H Y, WANG J D, XU T. A flight delay state-space model based on delay propagation[J]. Information and Control, 2012, 41(2):251-255(in Chinese).
[7] REBOLLO J J, BALAKRISHNAN H. Characterization and prediction of air traffic delays[J]. Transportation Research Part C:Emerging Technologies, 2014, 44:231-241.
[8] CHOI S, KIM Y J, BRICENO S, et al. Prediction of weather-induced airline delays based on machine learning algorithms[C]//2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC).Piscataway:IEEE Press, 2016:1-6.
[9] KIM Y J, CHOI S, BRICENO S, et al. A deep learning approach to flight delay prediction[C]//2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). Piscataway:IEEE Press, 2016:1-6.
[10] KHANMOHAMMADI S, TUTUN S, KUCUK Y. A new multilevel input layer artificial neural network for predicting flight delays at JFK airport[J]. Procedia Computer Science, 2016, 95:237-244.
[11] 郭野晨风, 李杰, 胡明华, 等. 基于简化WITI指标的机场延误预测方法[J]. 交通运输系统工程与信息, 2017, 17(5):207-213. GUO Y, LI J, HU M H, et al. Airport delay prediction method based on simplified weather impacted traffic index[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5):207-213(in Chinese).
[12] YU B, GUO Z, ASIAN S, et al. Flight delay prediction for commercial air transport:A deep learning approach[J]. Transportation Research Part E:Logistics and Transportation Review, 2019, 125:203-221.
[13] TANG V, VIJAY S. System dynamics origins, development, and future prospects of a method[C]//Research Seminar in Engineering Systems, 2001:1-12.
[14] FROLOW I, SINNOTT J H. National Airspace System demand and capacity modeling[J]. Proceedings of the IEEE, 1989, 77(11):1618-1624.
[15] WIELAND F. Limits to growth:results from the detailed policy assessment tool[air traffic congestion[C]//16th AIAA/IEEE Digital Avionics Systems Conference. Reflections to the Future.Piscataway:IEEE Press, 1997.
[16] LONG D, HASAN S. Improved predictions of flight delays using LMINET2 system-wide simulation model[C]//9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO).Reston:AIAA, 2009
[17] PYRGIOTIS N, MALONE K M, ODONI A. Modelling delay propagation within an airport network[J]. Transportation Research Part C:Emerging Technologies, 2013, 27:60-75.
[18] WONG J T, TSAI S C. A survival model for flight delay propagation[J]. Journal of Air Transport Management, 2012, 23:5-11.
[19] 武喜萍, 杨红雨, 韩松臣. 基于复杂网络的空中交通特征与延误传播分析[J]. 航空学报, 2017, 38(S1):721473. WU X P, YANG H Y, HAN S C. Analysis of properties and delay propagation of air traffic based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):721473(in Chinese).
[20] MACAL C M, NORTH M J. Agent-based modeling and simulation[C]//Proceedings of the 2009 Winter Simulation Conference (WSC).Piscataway:IEEE Press, 2009:86-98.
[21] CAMPANELLI B, FLEURQUIN P, EGUÍLUZ V M, et al. Modeling reactionary delays in the European air transport network[C]//Proceedings of the Fourth SESAR Innovation Days, 2014:1-6.
[22] FLEURQUIN P, RAMASCO J J, EGUILUZ V M. Systemic delay propagation in the US airport network[J]. Scientific Reports, 2013, 3:1159.
[23] (澳)吴成仑. 航班运营及延误管理[M]. 周小春, 邹建军, 甄影译, 北京:中国民航出版社, 2011:8-49. WU C L. Airline operations and delay management[M]. ZHOU X C, ZOU J J, ZHEN Y, translated Beijing:China Civil Aviation Publishing House, 2011:8-49.
[24] 中国民用航空局.2018年民航行业发展统计公报[EB/OL]. (2019-05-08)[2020-09-05]. http://www.caac.gov.cn/XXGK/XXGK/TJSJ/201905/P02019050851952-9727887.pdf. Civil Aviation Administration of China. 2018 civil aviation industry development statistical bulletin[EB/OL]. (2019-05-08)[2020-09-05]. http://www.caac.gov.cn/XXGK/XXGK/TJSJ/201905/P020190508519529727887.pdf.
[25] 美国交通统计局. 航空公司准时统计及延误原因[EB/OL].(2019-01-01)[2020-09-05]. https://www.transtats.bts.gov/OT_Delay/ot_delaycause1.asp?display=data&pn=1. Bureau of Transportation Statistics. Airline on-time statistics and delay causes[EB/OL]. (2019-01-01)[2020-09-05]. https://www.transtats.bts.gov/OT_Delay/ot_delaycause1.asp?display=data&pn=1.
[26] 叶博嘉. 基于多agent的空中交通协同流量管理研究[D]. 南京:南京航空航天大学, 2013:16-22. YE B J. Research on collaborative air traffic flow management based upon multi-agent modeling and simulation[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013:16-22(in Chinese).
[27] MOLINA M, CARRASCO S, MARTIN J. Agent-based modeling and simulation for the design of the future European air traffic management system:The experience of CASSIOPEIA[C]//Highlights of Practical Applications of Heterogeneous Multi-Agent Systems the PAAMS Collection, 2014.
[28] SIEGFRIED R. Grams-general reference model for agent-based modeling and simulation[M]//Modeling and Simulation of Complex Systems. Wiesbaden:Springer Fachmedien Wiesbaden, 2014:75-110.
[29] CHURCHILL A M, LOVELL D J, MUKHERJEE A, et al. Determining the number of airport arrival slots[J]. Transportation Science, 2013, 47(4):526-541.
[30] KELLER J M, GRAY M R, GIVENS J A. A fuzzy K-nearest neighbor algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(4):580-585.
[31] KAFLE N, ZOU B. Modeling flight delay propagation:A new analytical-econometric approach[J]. Transportation Research Part B:Methodological, 2016, 93:520-542.
[32] HAN J W, KAMBER M, PEI J. 数据挖掘:概念与技术[M]. 3版. 范明, 孟小峰, 译. 北京:机械工业出版社. 2012:55-58. HAN J W, KAMBER M, PEI J. Data mining:Con-cept and techniques[M]. 3rd edition. FAN M, MENG X F, Translated. Beijing:China Machine Press. 2012:55-58(in Chinese).
[33] 王星, 褚挺进. 非参数统计[M]. 2版. 北京:清华大学出版社, 2014:209-218. WANG X, CHU T J. Non-parametric statistics[M]. 2nd edition. Beijing:Tsinghua University Press, 2014:209-218(in Chinese).
[34] GILBO E P. Airport capacity:representation, estimation, optimization[J]. IEEE Transactions on Control Systems Technology, 1993, 1(3):144-154.
文章导航

/