流体力学与飞行力学

二维平板水漂运动数值模拟

  • 付晓琴 ,
  • 李阳辉 ,
  • 卢昱锦 ,
  • 肖天航 ,
  • 童明波
展开
  • 南京航空航天大学 航空宇航学院, 南京 210016

收稿日期: 2020-06-01

  修回日期: 2020-08-12

  网络出版日期: 2020-09-17

基金资助

国家自然科学基金(11672133);江苏高校优势学科建设工程资助项目

Numerical simulation of two-dimensional plate skipping

  • FU Xiaoqin ,
  • LI Yanghui ,
  • LU Yujin ,
  • XIAO Tianhang ,
  • TONG Mingbo
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-06-01

  Revised date: 2020-08-12

  Online published: 2020-09-17

Supported by

National Natural Science Foundation of China (11672133); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

探索平板水漂运动的流体力学现象机理对飞行器着水问题的研究有重要的参考价值。基于有限体积法和k-ε RNG湍流模型求解非定常雷诺平均Navier-Stokes(URANS)方程,采用流体体积分数(VOF)模型与速度入口造波法构造数值波浪水池,并结合整体动网格方法,完成二维平板在静水面与波浪水面的水漂运动数值模拟。在与试验值和理论值对比的基础上,讨论初始姿态角、投掷角度与投掷速度对水漂运动的影响。进一步研究不同波浪参数和波浪位置对平板水漂的影响,并从能量角度展开分析。结果表明:20°姿态角平板能以最小的投掷速度实现水漂运动;运动中平板能量的相对损失率受初始投掷速度的影响较小,主要受投掷角和姿态角作用,随投掷角或姿态角的增加而增大。波浪情况下,在上行波位置触水的平板能够获得更大的接触面积,而更长的触水时间发生在波谷处;因此,这两个位置触水的平板在水漂运动过程中的相对能量损失大,其数值变化比波峰位置大5%左右;在上行波位置触水时,平板的速度衰减与相对能量损失随着波高的增加而增大,而波峰位置则有相反的变化趋势。

本文引用格式

付晓琴 , 李阳辉 , 卢昱锦 , 肖天航 , 童明波 . 二维平板水漂运动数值模拟[J]. 航空学报, 2021 , 42(6) : 124351 -124351 . DOI: 10.7527/S1000-6893.2020.24351

Abstract

Exploration of the hydrodynamics and mechanism of plate skipping is of significant reference value for the research on aircraft landing problem. Based on the finite volume method and k-ε RNG turbulence model, the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations are solved and a numerical tank is constructed by the velocity-inlet boundary wave maker combined with the Volume of Fluid (VOF) model. Coupled with the global dynamic mesh method, the numerical simulation of two-dimensional plate skipping on both calm and wavy water is carried out. Based on the comparison with experimental and theoretical values, the effects of the initial attitude angle, throwing angle and throwing speed on plate skipping are discussed. Furthermore, the influence of different wave parameters and wave positions is studied and analyzed from the perspective of energy conservation. It is shown that the plate with 20° attitude angle can achieve stone skipping at the minimum throwing speed, and the relative energy loss of the plate is less affected by the initial throwing speed, but mainly affected by the throwing angle and attitude angle, and rises with the increase of the throwing angle or attitude angle. In the case of waves, the plate touching the water at the balance position (up speed) can obtain larger contact area, while the longer contact time occurs at the trough. Therefore, the relative energy loss of the plate contacting the water at these two positions is serious, and the numerical change is about 5% larger than that at the peak position; in the case of touching the water at the balance position (up speed), a rise of the attenuation of velocity and energy loss appears with the increase of wave height, contrary to that at the crest position.

参考文献

[1] JOHNSON W. The ricochet of spinning and non-spinning spherical projectiles, mainly form water. Part II:an outline of theory and warlike[J]. International Journal of Impact Engineering, 1998, 21(1/2):25-34.
[2] 方方, 周璐, 李志辉. 航天器返回地球的气动特性综述[J]. 航空学报, 2015, 36(1):24-38. FANG F, ZHOU L, LI Z H. A comprehensive analysis of aerodynamics for spacecraft re-entry Earth's atmosphere surroundings[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):24-38(in Chinese).
[3] 申蒸洋,陈孝明,黄领才.大型水陆两栖飞机特殊任务模式对总体设计的挑战[J].航空学报, 2019, 40(1):522400. SHENG Z Y, CHEN X M, HUANG L C. Challenges for aircraft design due to special mission models of large-scale amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522400(in Chinese).
[4] 黄领才, 雍明培. 水陆两栖飞机的关键技术和产业应用前景[J]. 航空学报, 2019, 40(1):522708. HUANG L C,YONG M P. Key technologies and industrial application prospects of amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522708(in Chinese).
[5] 黄淼, 褚林塘, 李成华, 等. 大型水陆两栖飞机抗浪能力研究[J]. 航空学报, 2019, 40(1):522335. HUANG M, CHU L T, LI C H, et al. Seakeeping performance research of large amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522335(in Chinese).
[6] 郭保东,屈秋林,刘沛清,等.混合翼身布局客机SAX-40水上迫降力学性能数值研究[J]. 航空学报, 2013, 34(11):2443-2451. GUO B D, QU Q L, LIU P Q, et al. Ditching performance of silent aircraft SAX-40 in hybrid wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11):2443-2451(in Chinese).
[7] ROSELLINI L, HERSEN F, CLANET C, et al. Skipping stones[J]. Journal of Fluid Mechanics, 2005, 543(1):137-146.
[8] LYDERIC B,CHRISTOPHE C. The mystery of the skipping stone[J]. Physics World, 2006, 19(2):29-31.
[9] CLANET C, HERSEN F, BOCQUET L. Secrets of successful stone-skipping[J]. Nature, 2004, 427(6969):29.
[10] LYDERIC B. The physics of stone skipping[J]. American Journal of Physics, 2003, 71(2):150-155.
[11] DO J, LEE N, RYU K W. Realtime simulation of stone skipping[J]. International Journal of Computer, 2007, 4(1):251-254.
[12] Hale J K. Ordinary differential equations[J]. American Mathematical Monthly, 1969, 23(10):82-122.
[13] HARTMAN P. Ordinary differential equations[J]. Mathematics of Computation, 1982, 20:82-122.
[14] NAGAHIRO S I, HAYAKAWA Y. Theoretical and numerical approach to "Magic Angle" of stone skipping[J]. Physical Review Letters, 2005, 94(17):174501.
[15] 戴岩伟. 水漂运动与物理学规律[J].大学物理, 2009, 28(12):16-18. DAI Y W. Stone skipping and physics[J]. College Physics, 2009, 28(12):16-18(in Chinese).
[16] YAN R, MONAGHAN J J. SPH simulation of skipping stones[J]. European Journal of Mechanics/B Fluids, 2017, 61:61-71.
[17] 邬明. LS-DYNA的ALE方法在圆盘击水滑跳中的应用[J]. 科学技术与工程, 2011, 11(33):8247-8251. WU M. Numerical simulation research on bounce of circular disks base on the ALE of LS-DYNA[J]. Science Technology and Engineering, 2011, 11(33):8247-8251(in Chinese).
[18] 陈诗伟. 基于ANSYS/LS-DYNA的圆盘击水弹跳研究[J]. 舰船电子工程, 2013, 33(1):122-124. CHEN S W. Research on the skipping disk based on the ALE method in ANSYS/LS-DYNA[J]. Ship Electronic Engineering, 2013, 33(1):122-124(in Chinese).
[19] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
[20] LONGUET-HIGGINS M S, COKELET E D. The deformation of steep surface waves on water. I. a numerical method of computation[J]. Proceedings of the Royal Society A:Mathematical Physical & Engineering Sciences, 1976, 350(1660):1-26.
[21] BOO S Y. Linear and nonlinear irregular waves and forces in a numerical wave tank[J]. Ocean Engineering, 2002, 29(5):475-493.
[22] 金禹彤, 陈吉昌, 卢昱锦, 等. 楔形体入波浪水面数值模拟[J]. 航空学报, 2019, 40(10):122854. JIN Y T, CHEN J C, LU Y J, et al. Numerical simulation of wedge impacting on wavy water[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):122854(in Chinese).
[23] 卢昱锦, 肖天航, 李正洲. 高速平板着水数值模拟[J]. 航空学报, 2017, 38(S1):6-14. LU Y J, XIAO T H, LI Z Z. Numerical simulation of high speed plate ditching[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):6-14(in Chinese).
[24] QU Q, HU M, GUO H, et al. Study of ditching characteristics of transport aircraft by global moving mesh method[J]. Journal of Aircraft, 2015, 52(5):1550-1558.
[25] 陈震, 肖熙. 空气垫在平底结构入水砰击中作用的仿真分析[J]. 上海交通大学学报, 2005, 39(5):670-673. CHEN Z, XIAO X. Simulation analysis on the role of air cushion in the slamming of a flat-bottom structure[J]. Journal of Shanghai Jiao Tong University, 2005, 39(5):670-673(in Chinese).
[26] CARPENTER R G. Principles and procedures of statistics, with special reference to the biological sciences[J]. The Eugenics Review, 1960, 52(3):172.
[27] DRAPER N R, SMITH H. Applied regression analysis[M]. New York:John Wiley & Sons, 1998.
[28] GLANTZ S A, SLINKER B K, NEILANDS T B. Primer of applied regression & analysis of variance[M]. New York:McGraw-Hill, Inc., 2001.
文章导航

/