针对高空航天飞机等再入飞行器表面缺陷或防热瓦缝隙导致的局部压力过高和气动加热问题,采用直接模拟Monte Carlo (DSMC)方法研究了飞行高度为80 km的稀薄流区高超声速凹腔绕流问题,考虑气固相互作用(GSI)模型对凹腔流场特征和表面压力、热流的影响。结果表明:稀薄流条件(80 km)下,GSI为完全漫反射时,在凹腔前缘分离的剪切层再次附着在后缘,在凹腔内部形成一个充满腔体的单涡结构;随着GSI从完全漫反射向镜面反射变化,气体与凹腔表面之间的切向动量交换减弱,即黏性剪切作用减弱,外部气流被卷入凹腔的程度减弱,导致涡结构不断减小直至消失,凹腔底部逐渐出现所谓的"死水区"。与完全漫反射相比,镜面反射或近镜面反射会导致凹腔上游侧面的峰值压力和峰值热流以及下游侧面的峰值压力剧烈增大,在飞行器设计中,应特别留意上述表面的压力载荷和热载荷。
To alleviate the high local pressure and heat loads caused by cavities or imperfections on hypersonic vehicle surfaces, we investigate rarefied hypersonic flows over cavities at an altitude of 80 km using the Direct Simulation Monte Carlo (DSMC), examining the effects of Gas-Surface Interaction (GSI) models on flow characteristics inside the cavity, surface pressure and heat flux over the cavity surfaces. Results show that, in the rarefied regime (80 km), one primary vortex is formed as a result of shear layer separation and reattachment. In addition, as the GSI changes from perfect diffuse reflections to pure specular reflections, the exchanges of momentum in the tangent direction between the incident gas molecules and the cavity surfaces weaken, i.e. the viscous shear effects are weakened, lessening the ability of the external gas to penetrate deeper into the cavity. Therefore, the vortex inside the cavity progressively diminishes till ultimately disappears, leaving behind a so-called "dead-water region" at the bottom of the cavity. In comparison with the perfect-diffuse case, pure or near specular reflection causes a significant increase in the peak pressure and heat flux on the front wall of the cavity, and the peak pressure on the aft wall. Therefore, much attention should be paid to the pressure and heat loads on the aforementioned surfaces in the aerodynamic design.
[1] SUTTON G W. The initial development of ablation heat protection, an historical perspective[J]. Journal of Spacecraft and Rockets, 1982, 19(1):3-11.
[2] TENNEY D R, LISAGOR W B, DIXON S C. Materials and structures for hypersonic vehicles[J]. Journal of Aircraft, 1989, 26(11):953-970.
[3] NESTLER D E, SAYDAH A R, AUXER W L. Heat transfer to steps and cavities in hypersonic turbulent flow[J]. AIAA Journal, 1968, 7(7):1368-1370.
[4] EVERHART J L, GREENE F A. Turbulent supersonic/hypersonic heating correlations for open and closed cavities[J]. Journal of Spacecraft and Rockets, 2010, 47(4):545-553.
[5] PETLEY D H, SMITH D M, EDWARDS C L, et al. Surface step induced gap heating in the shuttle thermal protection system[J]. Journal of Spacecraft and Rockets, 1984, 21(2):156-161.
[6] Columbia Accident Investigation Board. Report of the space shuttle Columbia accident investigation[M]. Washington, D.C.:National Aeronautics and Space Administration, 2003.
[7] CHARWAT A F, ROOS J N, DEWEY C F, et al. An investigation of separated flows Part I:The pressure field[J]. Journal of Aerospace Sciences, 1961, 28(6):457-470.
[8] CHARWAT A F, DEWEY C F, ROOS J N, et al. An investigation of separated flows Part Ⅱ:Flow in the cavity and heat transfer[J]. Journal of Aerospace Sciences, 1961, 28(7):513-527.
[9] MORGENSTERN A, CHOKANI N. Hypersonic flow past open cavities[J]. AIAA Journal, 1994, 32(12):2387-2393.
[10] JACKSON A P, HILLIER R, SOLTANI S. Experimental and computational study of laminar cavity flow at hypersonic speeds[J]. Journal of Fluid Mechanics, 2001, 427:329-358.
[11] MOHRI K, HILLIER R. Computational and experimental study of supersonic flow over axisymmetric cavities[J]. Shock Waves, 2011, 21:175-191.
[12] LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47:186-216.
[13] 邱波, 张昊元, 国义军, 等. 高超声速飞行器表面横缝旋涡结构及气动热环境数值模拟[J]. 航空学报, 2015, 36(11):3515-3521. QIU B, ZHANG H Y, GUO Y J, et al. Numeric investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3515-3521(in Chinese).
[14] PALHARINI R C, SCANLON T J, REESE J M. Aerothermodynamic comparison of two-and three-dimensional rarefied hypersonic cavity flows[J]. Journal of Spacecraft and Rockets, 2014, 51(5):1619-1630.
[15] PALHARINI R C, SCANLON T J, WHITE C. Chemically reacting hypersonic flows over 3D cavities:Flowfield structure characterization[J]. Computers and Fluids, 2018, 165:173-187.
[16] PALHARINI R C, SANTOS W F N. The impact of the length-to-depth ratio on aerodynamic surface quantities of a rarefied hypersonic cavity flow[J]. Aerospace Science and Technology, 2019, 88:110-125.
[17] PAOLICCHI L T L C, SANTOS W F N. Length-to-depth ratio effects on aerodynamic surface quantities of a hypersonic gap flow[J]. AIAA Journal, 2018, 56(2):780-792.
[18] 靳旭红, 黄飞, 程晓丽, 等. 稀薄流区高超声速飞行器表面缝隙流动结构及气动热环境的分子模拟[J]. 航空动力学报, 2019, 34(1):201-209. JIN X H, HUANG F, CHENG X L, et al. Monte Carlo simulation for the flow-field structure and aerodynamic heating due to cavities present on hypersonic vehicle surfaces in the rarefied flow regime[J]. Journal of Aerospace Power, 2019, 34(1):201-209(in Chinese).
[19] GUO G M, LUO Q. Flowfield structure characteristics of the hypersonic flow over a cavity:From the continuum to the transition flow regimes[J]. Acta Astronautica, 2019, 161:87-100.
[20] SEBASTIAO I B, SANTOS W F N. Gas-surface interaction effects on the flowfield structure of a high speed microchannel flow[J]. Applied Thermal Engineering, 2013, 52:566-575.
[21] LOFTHOUSE A J, SCALABRIN L C, BOYD I D. Velocity slip and temperature jump in hypersonic aerothermodynamics[J]. Journal of Thermophysics and Heat Transfer, 2012, 22(1):38-49.
[22] YAMAGUCHI H, MATSUDA Y, NⅡMI T. Molecular-dynamics study on characteristics of energy and tangential momentum accommodation coefficients[J]. Physical Review E, 2017, 96:013116.
[23] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. New York:Oxford University Press, 1994:340-346.
[24] CERCIGNANI C, LAMPIS M. Kinetic models for gas-surface interactions[J]. Transport Theory and Statistical Physics, 1971, 1(2):101-114.
[25] LORD R G. Some extensions to the Cercignani-Lampis gas-surface scattering kernel[J]. Physics of Fluids A:Fluid Dynamics, 1991, 3(4):706-710.
[26] PADILLA J F, BOYD I D. Assessment of gas-surface interaction models for computation of rarefied hypersonic flow[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(1):96-105.
[27] BIRD G A. Approach to translational equilibrium in a rigid sphere gas[J]. Physics of Fluids, 1963, 6:1518-1519.
[28] WAGNER W A. convergence proof for Bird's direct simulation Monte Carlo[J]. Journal of Statistical Physics, 1992, 66:1011-1044.
[29] BIRD G A. Monte Carlo simulation of gas flows[J]. Annual Review of Fluid Mechanics, 1978, 10(8):11-31.
[30] BORGNAKKE C, LARSEN P S. Statistical collision model for Monte Carlo simulation of polyatomic gas mixture[J]. Journal of Computational Physics, 1975, 18(4):405-420.
[31] SUN Q H, BOYD I D. Evaluation of macroscopic properties in the direct simulation Monte Carlo method[J]. Journal of Thermophysics and Heat Transfer, 2005, 19(3):329-335.