作为新型垂直起降的载人航天器,Starship采用了新型舵面控制方式,其通过前后两组可沿轴线方向偏转的翼面来实现对机体的控制。通过CFD数值模拟手段对该种舵面形式的气动特性进行了系统研究,得到了该种舵面偏转方式对飞行器升阻力和三轴力矩的影响,并分析了其内在机理。在小攻角下,Starship后翼为操纵面,其偏转对控制力系数的影响较为显著,偏转角度与控制力系数基本成线性关系;前翼偏转则对阻力系数的影响较为显著,偏转角度与阻力系数基本线性相关。后翼偏转角与俯仰力矩系数和滚转力矩系数的线性相关性较好,对偏航力矩系数也有耦合影响。前翼的偏转对偏航力矩系数的影响显著,同时与滚转力矩系数和俯仰力矩系数的耦合较小。在大攻角下,尤其是在着陆阶段攻角大于90°的情况下,传统的襟副翼控制方式失效概率高,而新型舵面控制形式前翼和后翼偏转与三轴力矩系数的相关性仍非常强。其对于俯仰通道、滚转通道和偏航通道均能保持良好的操纵特性。
As a new vertical take-off and landing manned spacecraft, Starship adopts a new type of control surface. Two groups of wings separately mounted in the front and rear of the body that can be deflected along the axis direction are used to control the body movement. The aerodynamic characteristics of the Starship control surface are studied through numerical simulation. The influence of the control surface deflection on the lift, the drag and the triaxial torque is systematically investigated. At a small angle of attack, the rear wings are the main lift surface, with an almost linear relation between the deflected angle and the lift coefficient. The influence of the front wing deflection on the drag coefficient is more significant, and the relation between the deflected angle of the front wings and the drag coefficient is also linear. The deflection of the rear wings could affect the pitching moment, the rolling moment, and the yawing moment. The correlations between the deflection of the rear wings and the pitching moment coefficient and the rolling moment coefficient are almost linear. The deflection of the front wings almost only affects the yawing moment. At a large angle of attack, particularly when the attack angle is larger than 90°, the traditional flaperon control mode is basically ineffective. However, a strong relation between the triaxial moment coefficient and the deflection angle of the front and rear wings for the new control mode still exist. Therefore, Starship could still control the triaxial motion by deflecting both sides of the front and rear wings.
[1] 王永生. 从加加林首飞到国际空间站和深空探索——载人航天发展历程和未来主要发展方向[J]. 载人航天, 2017(2):41-48. WANG Y S. From the first flight of gagarin to iss and deep space exploration-history and future trends of human space flight[J]. Human Spaceflight, 2017(2):41-48(in Chinese).
[2] JOHNSON J, COLBO H. Space Shuttle main engine progress through the first flight[C]//17th Joint Propulsion Conference,1981.
[3] 杨雷, 张柏楠, 郭斌, 等. 新一代多用途载人飞船概念研究[J]. 航空学报, 2015, 36(3):703-713. YANG L, ZHANG B N, GUO B, et al. Concept definition of new-generation multi-purpose manned spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):703-713(in Chinese).
[4] 邓新宇, 秦曈, 郭金刚. 国内外载人运载火箭发展综述[J]. 国际太空, 2019(10):7. DENG X Y, QIN T, GUO J G. Review of development of manned launch vehicle[J]. Space International, 2019(10):7(in Chinese).
[5] MOWRY E C, CHRISTENSEN C B, SMITH P. The global launch industry:progress and evolution[J]. Recent Successful Satellite Systems:Visions of the Future, 2016:405.
[6] SMITH P M. A review of the competitive space transportation industry, from provider options to customer needs[C]//2018 AIAA SPACE and Astronautics Forum and Exposition. Reston:AIAA, 2018.
[7] KALERY A Y, SOROKIN I V, TYURIN M V. Human space exploration beyond the international space station:Role of relations of human, machine and the "Earth"[J]. Acta Astronautica, 2010, 67(7-8):925-933.
[8] 吴国兴. 21世纪的载人航天"路线图"[J]. 国际太空, 2005(6):1-9. WU G X. Roadmap of manned spaceflight in 21 st century[J]. Space International, 2005(6):1-9(in Chinese).
[9] GUTHRIE P J, CHRISTENSEN C B, FYE S. Definition and analysis of the international commercial spaceflight industry, 2006-2012[C]//AIAA SPACE 2013 Conference and Exposition. Reston:AIAA, 2013.
[10] MARSHALL T. An overview of the NASA aeronautics test program strategic plan[C]//27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2010.
[11] SMITH J. Could air force space command benefit from commercial space companies like spacex, xcor, virgin galactic, and bigelow aerospace?[C]//AIAA SPACE 2011 Conference & Exposition. Reston:AIAA, 2011.
[12] 张京男. "载人龙" 飞船无人试飞和"星船" 跳跃试飞双双铸就SpaceX公司重大里程碑[J]. 中国航天, 2019(4):10. ZHANG J N. Test launch of crew dragon and starship[J]. Aerospace China, 2019(4):10(in Chinese).
[13] 龙雪丹, 魏威. SpaceX商业载人运输系统首次无人试飞解析[J]. 飞航导弹, 2019(3):3. LONG X D, WEI W. Analysis of first unmanned test launch of SpaceX commercial manned transportation system[J]. Aerodynamic Missile Journal, 2019(3):3(in Chinese).
[14] 廖小刚, 王岩松. 2016国外载人航天发展综述[J]. 载人航天, 2017, 23(1):137-142. LIAO X G, WANG Y S. Review of human spaceflight development abroad in 2016[J]. Manned Spaceflight, 2017, 23(1):137-142(in Chinese).
[15] 廖小刚, 王岩松, 宋尧. 2017年国外载人航天发展综述[J]. 载人航天, 2018, 24(2):279-284. LIAO X G, WANG Y S, SONG R. Review of human spaceflight development abroad in 2017[J]. Manned Spaceflight, 2018, 24(2):279-284(in Chinese).
[16] 廖小刚, 王岩松. 2018年国外载人航天发展综述[J]. 载人航天, 2019, 25(1):122-127. LIAO X G, WANG Y S. Review of human spaceflight development abroad in 2018[J]. Manned Spaceflight, 2019, 25(1):122-127(in Chinese).
[17] THOMPSON T, WEEKS D, WALKER S, et al. DARPA/USAF falcon program update on the spacex maiden launch, mishap investigation and return to flight[C]//AIAA SPACE 2007 Conference & Exposition. Reston:AIAA, 2007.
[18] JONES H W. Impact of lower launch cost on space life support[C]//2018 AIAA SPACE and Astronautics Forum and Exposition. Reston:AIAA, 2018.
[19] SPISZ T S, TAYLOR J C, GIBSON D, et al. Processing infrared imagery of the spacex falcon first stage reentry during CRS-4 mission[C]//AIAA SPACE and Astronautics Forum and Exposition. Reston:AIAA, 2017.
[20] GERONTAKOS P, LEE T. Trailing-edge flap control of dynamic pitching moment[J]. AIAA Journal, 2007, 45(7):1688-1694.
[21] SIPPEL M, MANFLETTI C, BURKHARDT H. Long-term/strategic scenario for reusable booster stages[J]. Acta Astronautica, 2006, 58(4):209-221.
[22] Service to earth orbit, the moon, mars and beyond[EB/OL]. (2019-12-18)[2020-04-03]. http://www.spacex.com/starship.
[23] LI Z, XIAO T, LYU F, et al. A rapid analysis tool for aero/aerothermodynamics of hypersonic vehicles[J]. Transactions of Nanjing University of Aeronautics & Astronautics,2017,34(4):1-8.
[24] RUMSEY C L, SLOTNICK J P, LONG M, et al. Summary of the first AIAA CFD high-lift prediction workshop[J]. Journal of Aircraft, 2011, 48(6):2068-2079.
[25] WANG X L, WANG F X, LI Y L. Aerodynamic characteristics of high-lift devices with downward deflection of spoiler[J]. Journal of Aircraft, 2011, 48(2):730-735.