电子电气工程与控制

射手模型优化与辨识及其对图像制导的影响

  • 王辉 ,
  • 李涛 ,
  • 唐道光 ,
  • 吴骏雄 ,
  • 张意 ,
  • 黎海青
展开
  • 1. 北京理工大学 宇航学院, 北京 100081;
    2. 北京理工大学 无人机自主控制技术北京市重点实验室, 北京 100081;
    3. 北京信息科技大学 高动态导航技术北京市重点实验室, 北京 100085;
    4. 中北大学 电气与控制工程学院, 太原 030051;
    5. 中国北方工业公司, 北京 100053;
    6. 中国兵器工业第203研究所, 西安 710065

收稿日期: 2020-08-06

  修回日期: 2020-09-01

  网络出版日期: 2020-09-14

基金资助

国家自然科学基金重点项目(U1613225);北京信息科技大学高动态导航技术北京市重点实验室开放基金(HDN2020101)

Optimization and identification of shooter model and its influence on image guidance

  • WANG Hui ,
  • LI Tao ,
  • TANG Daoguang ,
  • WU Junxiong ,
  • ZHANG Yi ,
  • LI Haiqing
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Beijing Key Laboratory of UAV Autonomous Control, Beijing Institute of Technology, Beijing 100081, China;
    3. Beijing Key Laboratory of High-Dynamic Navigation Technology, Beijing Information Science and Technology University, Beijing 100085, China;
    4. School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China;
    5. China North Industries Corp., Beijing 100053, China;
    6. No. 203 Research Institute of China Ordnance Industries, Xi'an 710065, China

Received date: 2020-08-06

  Revised date: 2020-09-01

  Online published: 2020-09-14

Supported by

Key Program of National Natural Science Foundation of China (U1613225);Open Fund Project of Beijing Key Laboratory of High Dynamic Navigation Technology of Beijing Information Science and Technology University (HDN2020101)

摘要

基于数据链通信的人在回路制导模式额外引入了射手动力学而且存在图像信号延时,含有射手动力学的控制回路会对目标在视场(LOS)中的误差角进行跟踪补偿,从而提升图像制导弹药的制导控制性能。为探究射手动力学和图像信号延时对人在回路制导性能的影响,基于真实的图像导引头模型及参数,设计校正网络以满足导引头稳定回路的性能需求;引入两类射手模型,针对射手模型2,优化模型结构并通过贴近真实环境的辨识实验得到动力学参数,弥补了现有建模的不足。基于射手对不同图像信号延时的适应性,对比研究了两类射手模型与不同图像信号延时对导引头控制系统稳定性、快速性和人在回路比例导引制导精度的影响。仿真结果表明:图像信号延时越长,导引头跟踪速度越低、误差角越大,制导系统的收敛时间越长;优化后的射手模型2及其参数辨识更准确地描述了射手的操作行为,对制导系统的影响较低且满足系统性能要求。

本文引用格式

王辉 , 李涛 , 唐道光 , 吴骏雄 , 张意 , 黎海青 . 射手模型优化与辨识及其对图像制导的影响[J]. 航空学报, 2021 , 42(7) : 324607 -324607 . DOI: 10.7527/S1000-6893.2020.24607

Abstract

The human-in-the-loop guidance mode based on data link communication introduces additional shooter dynamics and has image signal delay, while the control loop with shooter dynamics will track and compensate the Line of Sight (LOS) angle error, thus directly improving the guidance and control performance of image guided ammunition. To explore the influence of shooter dynamics and image signal delay on human-in-the-loop guidance performance, a correction network is designed to meet the performance requirements of the seeker stability loop based on the real image seeker model and parameters. Two shooter models are introduced, with the shooter model 2, tructure optimized and dynamic parameters obtained via identification experiments in close-to-real environments, compensating for the shortcomings of the existing modeling. Based on the adaptability of the shooter to different image signal delays, the influence of two shooter models and different image signal delays on the stability, rapidity of the seeker and guidance precision of the human-in-the-loop proportional navigation guidance system are studied. The results show that the longer the image signal delay, the lower the seeker tracking speed, the larger the LOS angle error, and the longer the convergence time of the guidance system. The optimized second shooter model 2 and parameter identification more accurately describe the shooter behavior, which has a lower impact on the guidance system and meets the performance requirements of the system.

参考文献

[1] 欧阳志宏, 薛磊, 丁锋. 对光电精确制导武器的区域电子防空干扰目标分配方法[J]. 系统工程与电子技术, 2018, 40(12):2621-2628. OUYANG Z H, XUE L, DING F. Jamming target assignment method of regional electronic air defense against electro-optical precision guided weapon[J]. Systems Engineering and Electronics, 2018, 40(12):2621-2628(in Chinese).
[2] 王虎, 杜子亮, 刘汉平, 等. 用于跟踪新型精导武器的光电技术发展需求[J]. 激光与红外, 2018, 48(5):539-543. WANG H, DU Z L, LIU H P, et al. Development demands of electro-optical tracking technology for the new precision guided weapons[J]. Laser & Infrared, 2018, 48(5):539-543(in Chinese).
[3] YANG Z, WANG H, LIN D F. Time-varying biased proportional guidance with seeker's field-of-view limit[J]. International Journal of Aerospace Engineering, 2016, 2016:1-11.
[4] WANG H, LIN D F, CHENG Z X, et al. Optimal guidance of extended trajectory shaping[J]. Chinese Journal of Aeronautics, 2014, 27(5):1259-1272.
[5] WANG H, WANG J, LIN D F. Generalized optimal impact-angle-control guidance with terminal acceleration response constraint[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2017, 231(14):2515-2536.
[6] CHEN H M, LEE S, RAO R M, et al. Imaging for concealed weapon detection:A tutorial overview of development in imaging sensors and processing[J]. IEEE Signal Processing Magazine, 2005, 22(2):52-61.
[7] AASEN H, HONKAVAARA E, LUCIEER A, et al. Quantitative remote sensing at ultra-high resolution with UAV spectroscopy:A review of sensor technology, measurement procedures, and data correction workflows[J]. Remote Sensing, 2018, 10(7):1091.
[8] ZUO J, WANG G. The application research of ID chip for strain measurement in full scale aircraft structure strength static test[J]. Procedia Engineering, 2015, 99:1443-1447.
[9] HUANG L, SONG J M, ZHANG M Q, et al. Optical flow based guidance system design for semi-strapdown image homing guided missiles[J]. Chinese Journal of Aeronautics, 2016, 29(5):1345-1354.
[10] KECHAGIAS-STAMATIS O, AOUF N, GRAY G, et al. Local feature based automatic target recognition for future 3D active homing seeker missiles[J]. Aerospace Science and Technology, 2018, 73:309-317.
[11] KECHAGIAS-STAMATIS O, AOUF N, NAM D. Multi-modal automatic target recognition for anti-ship missiles with imaging infrared capabilities[C]//2017 Sensor Signal Processing for Defence Conference (SSPD). Piscataway:IEEE Press, 2017:1-5.
[12] SUN C, LIU Y K, JIANG S D. Communications security research on "man-in-the-loop" television guidance system data link[C]//2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Piscataway:IEEE Press, 2008:1561-1564.
[13] MULDER M, POOL D M, ABBINK D A, et al. Manual control cybernetics:State-of-the-art and current trends[J]. IEEE Transactions on Human-Machine Systems, 2018, 48(5):468-485.
[14] KAUSHAL H, KADDOUM G. Applications of lasers for tactical military operations[J]. IEEE Access, 2017, 5:20736-20753.
[15] YU T P, CHEN Y B, LI J. The communication design of the optical fiber reflective memory network in the semi-physical simulation system of the laser beam rider guidance missile[C]//Proceedings of the 2015 International Conference on Advances in Mechanical Engineering and Industrial Informatics. Paris:Atlantis Press, 2015:482-487.
[16] AMOAH A, BAO J F, KWAKU A, et al. Microwave super high frequency (SHF) antenna for (satellite communication systems, radar, aircraft navigation, radio astronomy, remote sensing and communications)[C]//2018 IEEE Symposium on Product Compliance Engineering (SPCEB-Boston). Piscataway:IEEE Press, 2018:1-8.
[17] HONG J H, PARK S S, LEE C H, et al. Study on parasite effect with strapdown seeker in consideration of time delay[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(6):1383-1392.
[18] ZHANG Y, SUN L, SHEN J, et al. Iterative tuning of modified uncertainty and disturbance estimator for time-delay processes:A data-driven approach[J]. ISA Transactions, 2019, 84:164-177.
[19] HESS R A. Analysis of aircraft attitude control systems prone to pilot-induced oscillations[J]. Journal of Guidance, Control, and Dynamics, 1984, 7(1):106-112.
[20] YILMAZ D, PAVEL M, JONES M, et al. Identification of pilot control behavior during possible rotorcraft pilot coupling events[C]//38th European Rotorcraft Forum, 2012:1147-1171.
[21] XU S T, TAN W Q, EFREMOV A V, et al. Review of control models for human pilot behavior[J]. Annual Reviews in Control, 2017, 44:274-291.
[22] MCRUER D T, JEX H R. A review of quasi-linear pilot models[J]. IEEE Transactions on Human Factors in Electronics, 1967, 8(3):231-249.
[23] YU B, GILLESPIE R B, FREUDENBERG J S, et al. Identification of human feedforward control in grasp and twist tasks[C]//2014 American Control Conference. Piscataway:IEEE Press, 2014:2833-2838.
[24] POOL D M, ZAAL P M T, VAN PAASSEN M M, et al. Identification of multimodal pilot models using ramp target and multisine disturbance signals[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(1):86-97.
[25] ZAAL P M T, POOL D M, CHU Q P, et al. Modeling human multimodal perception and control using genetic maximum likelihood estimation[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4):1089-1099.
[26] ZAYCHIK K, CARDULLO F. Genetic algorithm based approach for parameters estimation of the Hess operator model[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston:AIAA, 2007:1-13.
[27] VAN KAMPEN E, ZAAL P M T, WEERDT E D, et al. Optimization of human perception modeling using interval analysis[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):42-52.
[28] KLEINMAN D L, BARON S, LEVISON W H. An optimal control model of human response part I:Theory and validation[J]. Automatica, 1970, 6(3):357-369.
[29] WANG L P, ZHU Q D, ZHANG Z, et al. Modeling pilot behaviors based on discrete-time series during carrier-based aircraft landing[J]. Journal of Aircraft, 2016, 53(6):1922-1931.
[30] ZAAL P M T. Manual control adaptation to changing vehicle dynamics in roll-pitch control tasks[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(5):1046-1058.
[31] YANG X, ZHOU Y P, ZHOU D K, et al. A new infrared small and dim target detection algorithm based on multi-directional composite window[J]. Infrared Physics & Technology, 2015, 71:402-407.
[32] HAN ALTINTAS O, EMRE TURGUT A. Online sensor bias estimation & calibration by Kalman filtering with adaptive Lyapunov redesign method[C]//2019 9th International Conference on Recent Advances in Space Technologies (RAST). Piscataway:IEEE Press, 2019:145-152.
[33] 赵军民, 胡国怀, 段辰璐, 等. "人在回路"图像制导导弹射手建模技术研究[J]. 弹箭与制导学报, 2012, 32(4):74-76. ZHAO J M, HU G H, DUAN C L, et al. The research on shooter modeling in the imaged-guided missile of "people-in-the-loop"[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2012, 32(4):74-76(in Chinese).
[34] 唐道光, 张公平, 杜肖, 等. 人在回路对导弹制导性能的影响研究[J]. 航空兵器, 2018(3):24-30. TANG D G, ZHANG G P, DU X, et al. Research on missile guidance performance of soldier-in-the-loop[J]. Aero Weaponry, 2018(3):24-30(in Chinese).
[35] POTTER J J, SINGHOSE W E. Effects of input shaping on manual control of flexible and time-delayed systems[J]. Human Factors, 2014, 56(7):1284-1295.
[36] HESS R A. Modeling human pilot adaptation to flight control anomalies and changing task demands[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(3):655-666.
[37] 吴骏雄. 基于光学成像导引头关键制导技术研究[D]. 北京:北京理工大学, 2019. WU J X. Research on key guidance technologies based on optical imaging seeker[D]. Beijing:Beijing Institute of Technology, 2019(in Chinese).
[38] 杜运理, 夏群利, 祁载康. 导引头隔离度相位滞后对寄生回路稳定性影响研究[J]. 兵工学报, 2011, 32(1):28-32. DU Y L, XIA Q L, QI Z K. Research on effect of seeker disturbance rejection rate with phase lag on stability of parasitical loop[J]. Acta Armamentarii, 2011, 32(1):28-32(in Chinese).
[39] 吴骏雄, 林德福, 王辉, 等. 基于最大似然估计和混合梯度优化的射手模型辨识[J]. 兵工学报, 2018, 39(12):2399-2409. WU J X, LIN D F, WANG H, et al. Identification of shooter model using maximum likelihood estimation and hybrid gradient optimization[J]. Acta Armamentarii, 2018, 39(12):2399-2409(in Chinese).
[40] DAMVELD H J, BEERENS G C, VAN PAASSEN M M, et al. Design of forcing functions for the identification of human control behavior[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1064-1081.
[41] ZARCHAN P. Tactical and strategic missile guidance,[M]. 5th ed. Reston AIAA, 2007:483-539.
[42] YEH F K. Adaptive-sliding-mode guidance law design for missiles with thrust vector control and divert control system[J]. IET Control Theory & Applications, 2012, 6(4):552.
文章导航

/