电子电气工程与控制

复杂环境下翼伞系统的组合式航迹规划

  • 李宇辉 ,
  • 赵敏 ,
  • 陈奇 ,
  • 姚敏 ,
  • 何紫阳
展开
  • 1. 南京航空航天大学 自动化学院, 南京 210016;
    2. 淮阴工学院 电子信息工程学院, 淮安 223003;
    3. 高速交通设施无损检测与监控技术-工业和信息化部重点实验室, 南京 210016

收稿日期: 2020-07-23

  修回日期: 2020-08-28

  网络出版日期: 2020-09-14

基金资助

国家自然科学基金(51875289,61873124);航空科学基金(20182952029);中央大学基础研究基金(NS2019017);研究生创新基金(kfjj20190319)

Combined trajectory planning of parafoil systems in complex environments

  • LI Yuhui ,
  • ZHAO Min ,
  • CHEN Qi ,
  • YAO Min ,
  • HE Ziyang
Expand
  • 1. College of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
    3. Nondestructive Detection and Monitoring Technology for High Speed Transportation Facilities-Key Laboratory of Ministry of Industry and Information Technology, Nanjing 210016, China

Received date: 2020-07-23

  Revised date: 2020-08-28

  Online published: 2020-09-14

Supported by

National Natural Science Foundation of China (51875289, 61873124); Aeronautical Science Foundation of China (20182952029); Fundamental Research Funds for the Central Universities (NS2019017); the Graduate Student Innovation Projects (kfjj20190319)

摘要

传统翼伞系统的航迹规划主要考虑落点精度及逆风着陆等指标,而当空投区域环境较为复杂,在翼伞系统归航路径上存在障碍时,如何规避这些障碍也成为翼伞系统航迹规划所必须要考虑的因素。针对翼伞空投过程有可能遇到高山或者高大建筑物阻碍的问题,提出了一种复杂环境下翼伞系统的组合式航迹规划策略。该方法将翼伞空投的区域分为障碍区和着陆区,在障碍区中采用快速搜索随机树(RRT)算法进行可行路径搜索,考虑到RRT算法生成的轨迹包含棱角,导致路径不够平滑的问题,结合翼伞系统质点模型的运动特性,对其进行了适用性改进,以使规划的航迹满足实际翼伞空投需求。为了解决RRT算法搜索方向随机,难以满足逆风着陆的问题,当翼伞系统进入着陆区后采用分段归航的方式设计航迹,并借助遗传算法(GA)求解目标参数,实现翼伞系统能量控制及逆风着陆。提出的复杂环境下翼伞系统的组合式航迹规划策略求解速度较快,能够同时满足翼伞系统避障、能量控制及逆风着陆要求,得到的参考航迹较为平滑。

本文引用格式

李宇辉 , 赵敏 , 陈奇 , 姚敏 , 何紫阳 . 复杂环境下翼伞系统的组合式航迹规划[J]. 航空学报, 2021 , 42(6) : 324566 -324566 . DOI: 10.7527/S1000-6893.2020.24566

Abstract

Traditional trajectory planning of parafoil systems mainly considers indicators such as landing accuracy and headwind landing. When the environment of the airdrop area is complicated with obstacles in the homing path of the parafoil system, obstacle avoidance has to be considered. Aiming at the problem that the parafoil airdrop process may encounter obstacles of mountains or tall buildings, this paper proposes a combined trajectory planning strategy for parafoil systems in complex environments. This method divides the parafoil airdrop area into an obstacle area and a landing area. In the obstacle area, the Rapid exploration Random Tree (RRT) algorithm is adopted to search for a feasible path. Since the RRT algorithm may cause edges and corners in the trajectory planning, it has been improved to meet the actual requirements of the parafoil airdrop by combining the characteristics of the parafoil model. The random search direction of the RRT algorithm makes it difficult to meet the requirements of headwind landing and the energy control of a parafoil system. Therefore, the multiphase homing is employed to design the trajectory in the landing area. The parafoil system energy control and headwind landing are realized by the Genetic Algorithm (GA) to solve the target parameters. The combined trajectory planning strategy for parafoil systems proposed in this paper can be solved quickly, and can simultaneously meet the requirements of parafoil system obstacle avoidance, energy control and headwind landing, obtaining a relatively smooth reference trajectory.

参考文献

[1] 朱虹, 孙青林, 邬婉楠, 等. 伞翼无人机精确建模与控制[J]. 航空学报, 2019, 40(6):122593. ZHU H, SUN Q L, WU W N, et al. Accurate modeling and control for parawing unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):122593(in Chinese).
[2] 熊菁, 秦子增, 程文科, 等. 翼伞系统分段归航轨迹的优化设计[J]. 航天返回与遥感, 2004,25(3):11-16. XIONG J, QIN Z Z, CHENG W K, et al. Optimal design in multiphase trajectory of parafoil system[J]. Spacecraft Recovery & Remote Sensing, 2004,25(3):11-16(in Chinese).
[3] 陶金, 孙青林, 朱二琳, 等. 基于遗传算法带约束的翼伞系统归航轨迹设计[J]. 中南大学学报(自然科学版), 2017,48(2):404-410. TAO J, SUN Q L, ZHU E L, et al. Genetic algorithm-based homing trajectory planning of parafoil system with constraints[J]. Journal of Central South University (Science and Technology), 2017,48(2):404-410(in Chinese).
[4] 陶金, 孙青林, 朱二琳, 等. 基于量子遗传算法的翼伞系统归航轨迹规划[J]. 哈尔滨工程大学学报, 2016,37(9):1261-1268. TAO J, SUN Q L, ZHU E L, et al. Homing trajectory planning of parafoil system based on quantum genetic algorithm[J]. Journal of Harbin Engineering University, 2016,37(9):1261-1268(in Chinese).
[5] 赵志豪, 赵敏, 陈奇, 等. 基于IAFSA的四自由度翼伞系统分段归航设计[J]. 火力与指挥控制, 2017,42(2):64-68. ZHAO Z H, ZHAO M, CHEN Q, et al. Design in multi-phase homing of 4-DOF parafoil system based on improved artificial fish-swarm algorithm[J]. Fire Control & Command Control, 2017,42(2):64-68(in Chinese).
[6] 高峰, 郭锐, 丰志伟, 等. 翼伞系统5段归航轨迹优化研究[J]. 兵工学报, 2020, 41(5):1025-1033. GAO F, GUO R, FENG Z W, et al. Optimization design of homing trajectory of the parafoil system with five segments[J]. Acta Armamentarii, 2020, 41(5):1025-1033(in Chinese).
[7] 熊菁. 翼伞系统系统动力学与归航方案研究[D]. 长沙:国防科学技术大学, 2005. XIONG J. Research on the dynamics and homing project of parafoil system[D]. Changsha:National University of Defense Technology, 2005(in Chinese).
[8] 高海涛, 张利民, 孙青林,等. 基于伪谱法的翼伞系统归航轨迹容错设计[J]. 控制理论与应用, 2013,30(6):702-708. GAO H T, ZHANG L M, SUN Q L, et al. Fault-tolerance design of homing trajectory for parafoil system based on pseudo-spectral method[J]. Control Theory & Applications, 2013,30(6):702-708(in Chinese).
[9] ZHANG L M, GAO H T, LI W X, et al. Multi-objective trajectory optimization method of parafoil based on particle swarm algorithm[C]//The 38th China Control Conference. Piscataway:IEEE Press, 2019.
[10] 梁海燕, 任志刚, 许超, 等. 翼伞系统最优归航轨迹设计的敏感度分析方法[J]. 控制理论与应用, 2015,32(8):1003-1011. LIANG H Y, REN Z G, XU C, et al. Optimal homing trajectory design for parafoil systems using sensitivity analysis approach[J]. Control Theory & Applications, 2015,32(8):1003-1011(in Chinese).
[11] 陈奇, 赵敏, 李宇辉, 等. 基于梯度下降法的翼伞系统最优分段航迹规划[J]. 航空学报, 2020, 41(12):324226. CHEN Q, ZHAO M, LI Y H, et al. Optimal segment constant trajectory planning for parafoil system based on gradient descent method[J]. Acta Aeronautica et Astronautica Sinica, 2020,41(12):324226(in Chinese).
[12] 孙昊, 孙青林, 滕海山, 等. 复杂环境下考虑动力学约束的翼伞轨迹规划[J]. 航空学报,2021, 42(3):324301. SUN H, SUN Q L, TENG H S, et al. Trajectory plan-ning for parafoil system considering dynamic constraints in complicated environment[J]. Acta Aeronautica et Astronautica Sinica,2021, 42(3):324301(in Chinese).
[13] 欧阳子路, 王鸿东, 黄一, 等. 基于改进RRT算法的无人艇编队路径规划技术[J]. 中国舰船研究, 2020, 15(3):18-24. OUYANG Z L, WANG H D, HUANG Y, et al. Unmanned boat formation path planning technology based on improved RRT algorithm[J]. Chinese Journal of Ship Research, 2020, 15(3):18-24(in Chinese).
[14] 李洋, 徐达. 基于引力自适应步长RRT的双臂机器人协同路径规划[J]. 机器人, 2020, 42(5):606-616. LI Y, XU D. Cooperative path planning of dual-arm ro-bots based on attractive force self-adaptive step size RRT[J]. Robot, 2020,42(5):606-616(in Chinese).
[15] 谭建豪, 潘豹, 王耀南, 等. 基于改进RRT*FN算法的机器人路径规划[J/OL]. 控制与决策:1-7[2021-01-20]. https://doi.org/10.13195/j.kzyjc.2019.1713. TAN J H, PAN B, WANG Y N, et al. Robot path planning based on improved RRT*FN algorithm[J/OL]. Control and Decision:1-7[2021-01-20]. https://doi.org/10.13195/j.kzyjc.2019.1713(in Chinese).
[16] 陶金, 孙青林, 陈增强, 等. 翼伞系统在较大风场中的归航控制[J]. 控制理论与应用. 2016,33(12):1630-1638. TAO J, SUN Q L, CHEN Z Q, et al. Homing control of a parafoil system in large wind environments[J]. Control Theory & Applications, 2016,33(12):1630-1638(in Chinese).
[17] 陈博伟,李思敏,唐智灵. 基于矢量场的无人机动力学规划算法[J/OL]. 计算机应用研究:1-6[2021-01-20]. https://doi.org/10.19734/j.issn.1001-3695.2019.11.0606. CHEN B W, LI S M, TANG Z L. UAV dynamic planning algorithm based on vector field[J/OL]. Application Research of Computers:1-6[2021-01-20]. https://doi.org/10.19734/j.issn.1001-3695.2019.11.0606(in Chinese).
[18] 罗淑贞,孙青林,檀盼龙,等. 基于高斯伪谱法的翼伞系统复杂多约束轨迹规划[J]. 航空学报,2017,38(3):220-230. LUO S Z, SUN Q L, TAN P L, et al. Trajectory planning of parafoil system with intricate constraints based on Gauss pseudo-spectral method[J]. Acta Aeronautica et Astronautica Sinica, 2017,38(3):220-230(in Chinese).
文章导航

/