流体力学与飞行力学

基于物理量梯度修正的RBF数据传递方法

  • 刘智侃 ,
  • 刘深深 ,
  • 刘骁 ,
  • 曾磊 ,
  • 代光月
展开
  • 1. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    2. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000

收稿日期: 2020-07-09

  修回日期: 2020-08-18

  网络出版日期: 2020-09-14

基金资助

国家自然科学基金(11702315);国家数值风洞工程

RBF data transfer based on physical gradient modification

  • LIU Zhikan ,
  • LIU Shenshen ,
  • LIU Xiao ,
  • ZENG Lei ,
  • DAI Guangyue
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2020-07-09

  Revised date: 2020-08-18

  Online published: 2020-09-14

Supported by

National Natural Science Foundation of China (11702315); National Numerical Wind Tunnel Project

摘要

径向基函数是复杂外形飞行器多场耦合计算中重要的数据传递方法。复杂飞行器物理量分布通常与局部流动特征密切相关且在不同区域变化剧烈,如何在具备各向同性特征的径向基函数中考虑实际物理量各向异性分布因素的影响成为制约其精度进一步提升的关键。针对径向基函数的问题,提出了一种基于局部物理量梯度对径向基三方向权重进行自适应修正的数据传递新方法。采用高超声速舵面、翼身组合体算例对该方法在单次数据传递中的可行性及效果进行了验证,同时基于该方法对压缩拐角外形开展了气动力/热/结构多场耦合数值模拟,并与风洞试验结果进行了对比分析,以验证该方法在实际耦合问题计算长时间高频次数据传递中的适用性及可靠性。研究结果表明该方法能够很好地提升如薄板样条插值(TPS)、多重二次函数插值(MQ)等全域基函数的单次插值效果,并且有效地改进了MQ方法对形态参数的鲁棒性,而对于梯度修正后的紧支基函数,其改进效果更佳,以较少的点达到了TPS、MQ等全域基函数的插值效果,实现了数据传递效率和精度的兼顾。采用该方法获得的耦合计算结果与试验对比一致,表明了该方法的可用性以及在复杂外形多场耦合问题中的良好工程应用前景。

本文引用格式

刘智侃 , 刘深深 , 刘骁 , 曾磊 , 代光月 . 基于物理量梯度修正的RBF数据传递方法[J]. 航空学报, 2021 , 42(7) : 124506 -124506 . DOI: 10.7527/S1000-6893.2020.24506

Abstract

The radial basis function is an important data transfer method in the multi-physical field coupling calculation of complex shaped aircraft. The distribution of physical quantities of complex aircraft, usually closely related to local flow characteristics, changes drastically in different regions. How to consider the influence of the anisotropic distribution of actual physical quantities in the radial basis function with isotropic characteristics has become the key to improving its accuracy. Aiming at the problem of the radial basis function, this paper proposes a new method for data transfer based on the local physical gradient to adaptively modify the radial basis weight in three directions. Using the hypersonic control surface and wing body combination to verify the feasibility and effect of this method in a single data transfer, we carry out aerodynamic/thermal/structural multi-physical field coupling for the compression corner shape, and compare it with the wind tunnel test results to verify the applicability and reliability of the method in the long-term high-frequency data transmission of the actual coupling problem. The results show that this method can improve the single interpolation effect of Thin Plate Spline(TPS), Multiquadric (MQ) and other global basis functions, and effectively improve the robustness of the MQ method for morphological parameters. The improvement of the compact support basis function after gradient modification has accomplished the effect of the global basis function, such as TPS and MQ, with fewer selected points and achieved better efficiency and accuracy of data transfer. The coupling calculation results obtained by this method are consistent with the experimental data, indicating the availability of this method and the good engineering application prospects in the complex shaped multi-physical field coupling problem.

参考文献

[1] 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1):325-345. PENG Z Y, SHI Y L, GONG H M, et al. Hypersonicaeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):325-345(in Chinese).
[2] THORNTON E A, DECHAUMPHAI P. Coupled flow, thermal, and structural analysis of aerodynamically heatedpanels[J]. Journal of Aircraft, 1988, 25(11):1052-1059.
[3] 桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学:物理学力学天文学, 2019, 49(11):139-153. GUI Y W. Combined thermal phenomena of hypersonicvehicle[J]. Scientia Sinica (Physica,Mechanica & Astronomica), 2019, 49(11):139-153(in Chinese).
[4] DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study ofaerodynamically heated leading edges[J]. Journal of Spacecraft and Rockets, 1989, 26(4):201-209.
[5] WIETING A R, DECHAUMPHAI P, BEY K S, et al. Application of integrated fluid-thermal-structural analysis methods[J]. Thin-Walled Structures, 1991, 11(1-2):1-23.
[6] LOEHNER R, YANG C, CERBAL J, et al. Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids[C]//29th AIAA Fluid Dynamics Conference. Reston:AIAA, 1998.
[7] TRAN H, FARHAT C. An integrated platform for the simulation of fluid-structure-thermal interaction problems[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2002.
[8] CULLER A J, MCNAMARA JJ. Studies on fluid-thermal-structural coupling for aerothermoelasticity in hypersonic flow[J]. AIAA Journal, 2010, 48(8):1721-1738.
[9] 徐敏, 史忠军, 陈士橹. 一种流体-结构耦合计算问题的网格数据交换方法[J]. 西北工业大学学报, 2003, 21(5):532-535. XU M, SHI Z J, CHEN S L. A suitable method for transferring information between CFD and CSD grids[J]. Journal of Northwestern Polytechnical University, 2003, 21(5):532-535(in Chinese).
[10] RENDALL T, ALLEN C. An efficient fluid-structure interpolation and mesh motion scheme for large aeroelastic simulations[C]//26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008.
[11] ALLEN C, RENDALL T. Unified approach to CFD-CSD interpolation and mesh motion using radial basis functions[C]//25th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2007.
[12] RENDALL T C S, ALLEN C B. Unified fluid-structure interpolation and mesh motion using radial basisfunctions[J]. International Journal for Numerical Methods in Engineering, 2008, 74(10):1519-1559.
[13] 郭中州, 何志强, 赵文文, 等. 高效非结构网格变形与流场插值方法[J]. 航空学报, 2018, 39(12):122411. GUO ZZ, HE Z Q, ZHAO W W, et al. Efficient mesh deformation and flowfield interpolation method for unstructured mesh[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122411(in Chinese).
[14] 刘君, 刘瑜, 陈泽栋. 非结构变形网格和离散几何守恒律[J]. 航空学报, 2016, 37(8):2395-2407. LIU J, LIU Y, CHEN Z D. Unstructured deforming mesh and discrete geometric conservationlaw[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2395-2407(in Chinese).
[15] 王刚, 雷博琪, 叶正寅. 一种基于径向基函数的非结构混合网格变形技术[J]. 西北工业大学学报, 2011, 29(5):783-788. WANG G, LEI B Q, YE Z Y. An efficient deformation technique for hybrid unstructured grid using radial basis functions[J]. Journal of Northwestern Polytechnical University, 2011, 29(5):783-788(in Chinese).
[16] 魏其, 李春娜, 谷良贤, 等. 一种基于径向基函数和峰值选择法的高效网格变形技术[J]. 航空学报, 2016, 37(7):2156-2169. WEI Q, LI C N, GU L X, et al. An efficient mesh deformation method based on radial basis functions and peak-selectionmethod[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2156-2169(in Chinese).
[17] 刘深深, 桂业伟, 唐伟, 等. 一种多场耦合数据传递新方法[J]. 宇航学报, 2016, 37(1):61-67. LIU SS, GUI Y W, TANG W, et al. A new data transfer method in fluid-thermal-structure coupling problems[J]. Journal of Astronautics, 2016, 37(1):61-67(in Chinese).
[18] 吴宗敏. 散乱数据拟合的模型、方法和理论[M]. 北京:科学出版社, 2007:96-123. WU Z M.Models, methods and theories of scatteres data fitting[M]. Beijing:Science Press, 2007:96-123(in Chinese).
[19] 苏波. 流固交互作用理论、方法研究[D]. 上海:同济大学, 2009:66-84. SU B.Research of theory and method of fluid-structure coupling interaction[D]. Shanghai:Tongji University, 2009:66-84(in Chinese).
[20] BOER A, BIJL H, ZUIJLEN A. Comparing different methods for the coupling of non-matching meshes in fluid-structure interaction computations[C]//17th AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2005.
[21] 冯毅, 肖光明, 唐伟, 等. 类X-37运载器气动布局概念设计[J]. 空气动力学学报, 2013, 31(1):94-98. FENG Y,XIAO G M, TANG W, et al. Aerodynamics configuration conceptual design for X-37 analog transporter[J]. Acta Aerodynamica Sinica, 2013, 31(1):94-98(in Chinese).
[22] 刘磊, 代光月, 曾磊, 等. 气动力/热与结构多场耦合试验模型方案初步设计[J]. 航空学报, 2017, 38(11):221165. LIU L, DAI G Y, ZENG L, et al. Preliminary test model design of fluid-thermal-structural interaction problems[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(11):221165(in Chinese).
[23] 中国航空材料手册编委会. 中国航空材料手册[M]. 北京:中国标准出版社, 2002:829-835. ChinaAeronautical Materials Handbook Editorial Board. China aeronautical materials handbook[M]. Beijing:China Standard Press, 2002:829-835(in Chinese).
[24] 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):020844. GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(7):020844(in Chinese).
文章导航

/