流体力学与飞行力学

磁控热防护系统在天地往返运载器上的应用仿真

  • 丁明松 ,
  • 刘庆宗 ,
  • 江涛 ,
  • 董维中 ,
  • 高铁锁 ,
  • 傅杨奥骁
展开
  • 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2020-07-06

  修回日期: 2020-07-31

  网络出版日期: 2020-09-14

基金资助

国家重点研发计划(2019YFA0405203);国家数值风洞工程

Simulation of magnetohydrodynamic heat shield system on reusable launch vehicles

  • DING Mingsong ,
  • LIU Qingzong ,
  • JIANG Tao ,
  • DONG Weizhong ,
  • GAO Tiesuo ,
  • FU Yang'aoxiao
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2020-07-06

  Revised date: 2020-07-31

  Online published: 2020-09-14

Supported by

National Key Research & Development Plan (2019YFA0405203); National Numerical Windtunnel Project

摘要

磁控热防护技术在高超声速领域显现出广泛的应用前景。考虑高超声速流动磁流体力学控制涉及的等离子体生成机制、多电离组分导电机理以及电磁流动能量/动量输运机制,通过耦合求解电磁场泊松方程和带电磁源项的高温热化学非平衡流动控制方程组,搭建了高超声速磁控热防护数值模拟平台。结合美国航天飞机"哥伦比亚"号(OV-102)近似外形和5种磁场配置方案,较为系统地开展了磁控热防护系统在高超声速"滑翔返回式"天地往返运载器上的应用仿真研究。结果表明:搭建的磁控热防护仿真平台具备偶极子磁场、均匀磁场、螺线管磁场及多个磁场组合条件下复杂外形飞行器气动热环境数值模拟能力,其校验结果与文献或飞行试验数据符合较好;采用合适的磁场配置能有效降低航天飞机的表面热流,显著改善了航天飞机的气动热环境,典型状态的表面热流下降25%以上;局部磁场方向与流动方向的夹角,在一定程度上决定了洛伦兹力的强度和方向,对磁控效果的影响明显。

本文引用格式

丁明松 , 刘庆宗 , 江涛 , 董维中 , 高铁锁 , 傅杨奥骁 . 磁控热防护系统在天地往返运载器上的应用仿真[J]. 航空学报, 2021 , 42(7) : 124501 -124501 . DOI: 10.7527/S1000-6893.2020.24501

Abstract

Magnetohydrodynamic heat shield technology has a promising future in its application on hypersonic vehicles. Considering the mechanism of plasma formation, conduction of ionization species and transportation of energy and momentum in electromagnetic flow, which are involved in hypersonic magnetohydrodynamic control, we build the numerical simulation platform of the hypersonic magnetohydrodynamic heat shield by solving high temperature nonequilibrium flow governing equations coupled with Poisson’s equation of electromagnetic fields. Using the configuration of American space shuttle "Columbia" (OV-102) and 5 different magnetic field disposition cases, the application simulation of the magnetohydrodynamic heat shield system on the hypersonic reusable launch vehicle is systematically carried out. The results show that the hypersonic magnetohydrodynamic heat shield simulation platform built in this study has the ability to simulate the aerodynamic thermal environment of complex-shaped aircraft in dipole, solenoid, uniform magnetic fields and superposition magnetic fields, and the validation result is in good agreement with the reference or the flight test data; appropriate magnetic field disposition effectively reduces the surface heat flux of the space shuttle and improves the aerodynamic thermal environment, with the surface heat flux under typical condition decreased by more than 25%; the angle between the local magnetic field and the inflow decides the magnitude and direction of Lorentz force to some extent, exhibiting a strong influence on the effect of the magnetohydrodynamic heat shield system.

参考文献

[1] 志豪. 美国航天飞机第135次飞行阿特兰蒂斯号终曲航天飞机全部退役[J]. 国际太空, 2011(8):37-41. ZHI H. The 135th flight of American space shuttle[J]. Space International, 2011(8):37-41(in Chinese).
[2] 马野, 许健, 邵秋虎. 后航天飞机时代天地往返运载器发展趋势研究[J]. 中国航天, 2015(3):17-22. MA Y, XU J, SHAO Q H. Development trend of reusable launch vehicle in the post era of space shuttle[J]. Aerospace China, 2015(3):17-22(in Chinese).
[3] 李开, 柳军, 刘伟强. 磁控热防护系统高温流场与电磁场耦合计算方法[J]. 宇航学报, 2017, 38(5):474-480. LI K, LIU J, LIU W Q. Numerical methods of coupling high temperature flow field with electro magnetic field for magnetohydrodynamic heat shield system[J]. Journal of Astronautics, 2017, 38(5):474-480(in Chinese).
[4] 田正雨. 高超声速流动的磁流体力学控制数值模拟研究[D]. 长沙:国防科学技术大学, 2008. TIAN Z Y. Numerical investigation for hypersonic flow control by magnetohydrodynamics methods[D]. Changsha:National University of Defense Technology, 2008(in Chinese).
[5] 潘勇. 高超声速流场磁场干扰效应数值模拟方法研究[D]. 南京:南京航空航天大学, 2007. PAN Y. Numerical methods for hypersonic flowfield with magnetic interference[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).
[6] AITHAL S, MUNIPALLI R, SHANKAR V. Performance enhancement of high speed inlets using MHD:ADA422143[R]. Westlake Village:HyPerCom Inc., 2004.
[7] BISEK N, POGGIE J. Exploration of MHD flow control for a hypersonic blunt elliptic cone with an impregnated ablator[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011
[8] BITYURIN V, BOCHAROV A. On efficiency of heat flux mitigation by the magnetic field in MHD entry flow[C]//42nd AIAA Plasmadynamics and Lasers Conference. Reston:AIAA, 2011
[9] OTSU H, ABE T, KONIGORSKI D. Influence of the Hall effect on the electrodynamic heat shield system for reentry vehicles[C]//36th AIAA Plasmadynamics and Lasers Conference. Reston:AIAA, 2005.
[10] FUJINO T, ISHIKAWA M. Numerical simulation of MHD flow control along super orbital reentry trajectory[C]//44th AIAA Plasmadynamics and Lasers Conference. Reston:AIAA, 2013
[11] GüLHAN A, ESSER B, KOCH U, et al. Experiments on heat-flux mitigation by electromagnetic fields in ionized flows[C]//40th AIAA Plasmadynamics and Lasers Conference. Reston:AIAA, 2009
[12] 李开, 刘伟强. 高超声速飞行器磁控热防护系统建模分析[J]. 物理学报, 2016, 65(6):220-228. LI K, LIU W Q. Analysis of the magnetohydrodynamic heat shield system for hypersonic vehicles[J]. Acta Physica Sinica, 2016, 65(6):220-228(in Chinese).
[13] 丁明松, 江涛, 刘庆宗, 等. 电导率模拟对高超声速MHD控制影响[J]. 航空学报, 2019, 40(11):123009. DING M S, JIANG T, LIU Q Z, et al. Impact of simulation of electrical conductivity on hypersonic MHD control[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):123009(in Chinese).
[14] 丁明松, 刘庆宗, 江涛, 等. 高温气体效应对高超声速磁流体控制的影响[J]. 航空学报, 2020, 41(2):123278. DING M S, LIU Q Z, JIANG T, et al. Impact of high temperature gas effect on hypersonic magnetohydrodynamic control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):123278(in Chinese).
[15] 丁明松, 江涛, 董维中, 等. 热化学模型对高超声速磁流体控制数值模拟影响分析[J]. 物理学报, 2019, 68(17):20190378. DING M S, JIANG T, DONG W Z, et al. Numerical analysis of influence of thermochemical model on hypersonic magnetohydrodynamic control[J]. Acta Physica Sinica, 2019, 68(17):20190378(in Chinese).
[16] 丁明松, 江涛, 董维中, 等. 三维等离子体MHD气动热环境数值模拟[J]. 航空学报, 2017, 38(8):121030. DING M S, JIANG T, DONG W Z, et al. Numerical simulation of 3D plasma MHD aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8):121030(in Chinese).
[17] PARK C. Review of chemical-kinetic problems of future NASA missions. I-Earth entries[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(3):385-398.
[18] 高铁锁, 董维中, 江涛, 等. 化学模型对数值模拟等离子体流动的影响研究[J]. 宇航学报, 2016, 37(10):1193-1199. GAO T S, DONG W Z, JIANG T, et al. Research on effects of chemical models on numerical simulation of plasma flow[J]. Journal of Astronautics, 2016, 37(10):1193-1199(in Chinese).
[19] 高铁锁, 董维中, 丁明松, 等. 物理化学模型对高温流场等离子体分布的影响[J]. 空气动力学学报, 2013, 31(5):541-545,553. GAO T S, DONG W Z, DING M S, et al. The effects of physicochemical models on distribution of plasma in high temperature flowfield[J]. Acta Aerodynamica Sinica, 2013, 31(5):541-545,553(in Chinese).
[20] FUJINO T, TAKAHASHI T. Numerical simulation of Mars entry flight using magnetohydrodynamic parachute effect[C]//47th AIAA Plasmadynamics and Lasers Conference. Reston:AIAA, 2016
[21] 雷银照. 轴对称线圈磁场计算[M]. 北京:中国计量出版社, 1991:1-3, 59-89. LEI Y Z. Axisymmetric coil magnetic field computation[M]. Beijing:China Metrology Publishing House, 1991:1-3, 59-89(in Chinese).
[22] 姚霄, 刘伟强, 谭建国. 高速飞行器磁控阻力特性[J]. 物理学报, 2018, 67(17):187-196. YAO X, LIU W Q, TAN J G. Analysis of magnetohydrodynamic drag character for hypersonic vehicles[J]. Acta Physica Sinica, 2018, 67(17):187-196(in Chinese).
[23] 陈刚, 张劲柏, 李椿萱. 磁流体流动控制中的磁场配置效率研究[J]. 力学学报, 2008, 40(6):752-759. CHEN G, ZHANG J B, LI C X. Efficiency analysis of magnetic field configuration in MHD flow control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6):752-759(in Chinese).
[24] SCOTT C D. Effects of nonequilibrium and wall catalysis on Shuttle heat transfer[J]. Journal of Spacecraft and Rockets, 1985, 22(5):489-499.
文章导航

/