材料工程与机械制造

不同编织结构Cf/Al复合材料高温压缩性能与失效机理

  • 兰泽宇 ,
  • 余欢 ,
  • 徐志锋 ,
  • 帅亮 ,
  • 胡银生
展开
  • 南昌航空大学 轻合金加工科学与技术国防重点学科实验室, 南昌 330063

收稿日期: 2020-07-02

  修回日期: 2020-07-23

  网络出版日期: 2020-09-14

基金资助

国家自然科学基金(51765045);航空科学基金(2019ZF056013)

High temperature compressive properties and failure mechanism of Cf/Al composites with different braided structures

  • LAN Zeyu ,
  • YU Huan ,
  • XU Zhifeng ,
  • SHUAI Liang ,
  • HU Yinsheng
Expand
  • Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China

Received date: 2020-07-02

  Revised date: 2020-07-23

  Online published: 2020-09-14

Supported by

National Natural Science Foundation of China (51765045); Aeronautical Science Foundation of China (2019ZF056013)

摘要

对基于真空气压浸渗法制备的三维五向、三维正交、叠层穿刺和2.5D浅交直联4种不同编织结构Cf/Al复合材料,分别在350℃和400℃下进行压缩试验,分析其高温压缩性能以及温度对复合材料压缩性能的影响,并进一步利用SEM观察叠层穿刺结构的断口形貌,探讨其压缩失效机理。结果表明,不同编织结构的复合材料在高温环境下压缩性能差异较大,三维正交结构的压缩强度最高,在350℃和400℃下分别为351.4 MPa和288.6 MPa;2.5D浅交直联结构的压缩强度最低,分别为87.3 MPa和52.2 MPa。同时不同编织结构的Cf/Al复合材料高温稳定性也存在较大差异,当温度由350℃升高到400℃时,2.5D浅交直联结构的压缩强度下降幅度较大,约为40.2%,其高温压缩稳定性较差;叠层穿刺结构的压缩强度下降幅度较小,约为4.0%,其高温压缩稳定性较好。叠层穿刺结构复合材料的高温压缩失效过程根据切线模量特征可分为两个阶段:第一阶段基体合金承受主要载荷,第二阶段基体与增强纤维共同承受载荷。

本文引用格式

兰泽宇 , 余欢 , 徐志锋 , 帅亮 , 胡银生 . 不同编织结构Cf/Al复合材料高温压缩性能与失效机理[J]. 航空学报, 2021 , 42(9) : 424488 -424488 . DOI: 10.7527/S1000-6893.2020.24488

Abstract

The compressive properties of Cf/Al composites with four different braided structures prepared by vacuum pressure infiltration method, i.e. 3D five direction, 3D orthogonal, laminated puncture and 2.5D shallow-straight joint woven, are tested at 350℃ and 400℃, respectively. The high-temperature compressive properties of Cf/Al composites with different braided structures and the influence of temperature on the compressive properties are discussed, the fracture morphology of laminated puncture structures is further observed by SEM and the compressive failure mechanism is analyzed. The results show different compressive properties of composites with different braided structures at high temperature. The compressive strength of the 3D orthogonal structure is higher, which are 351.4 MPa and 288.6 MPa at 350℃ and 400℃, respectively, while that of the 2.5D shallow orthogonal structure is lower, which are 87.3 MPa and 52.2 MPa, respectively. Meanwhile, a large difference exists in high temperature stability. When the temperature rises from 350℃ to 400℃, the compressive strength of the 2.5D shallow-straight joint woven decreases by about 40.2% with poor high-temperature compressive stability. The compressive strength of the laminated puncture decreases by about 4.0%, with good high-temperature compressive stability. The high temperature compressive failure process of the laminated puncture structure composite materials can be divided into two stages according to the characteristics of tangent modulus:the first stage is when the base alloy bears the main load, and the second stage is when the base alloy and the reinforced fiber bear the load together.

参考文献

[1] TAMURA T, NAKAMURA T, TAKAHASHI K, et al. Research of CMC application to turbine components[J]. IHI Engineering Review, 2005, 38(2):58-62.
[2] 王一博,刘振国,胡龙,等. 三维编织复合材料研究现状及在航空航天中应用[J]. 航空制造技术, 2017(19):78-85. WANG Y B, LIU Z G, HU L, et al. Recent advancements of 3D braided composite and its applications in aerospace[J]. Aeronautical Manufacturing Technology, 2017(19):78-85(in Chinese).
[3] 郝新超,胡杰. 三维编织技术在航空航天中的应用[J]. 中国科技信息, 2019(21):25-26. HAO X C, HU J. Application of 3D braiding technology in aerospace[J]. China Science and Technology Information, 2019(21):25-26(in Chinese).
[4] 姜黎黎,吴日娜,徐美玲,等. 三维四向编织碳纤维/环氧树脂复合材料在热环境中的拉压力学性能实验[J]. 复合材料学报, 2020, 37(2):309-317. JIANG L L, WU R N, XU M L, et al. Experimental investigation on the tensile and compressive properties of 3D braided composites in thermal environment[J]. Acta Materiae Compositae Sinica, 2020, 37(2):309-317(in Chinese).
[5] 李娜. 三维针刺复合材料的力学性能研究[D]. 西安:西安理工大学, 2019:64. LI N. Study on mechanical properties of three-dimensional needle-punched composites[D]. Xi'an:Xi'an University of Technology,2019:64(in Chinese).
[6] 李嘉禄,贺桂芳,陈光伟. 温度对三维五向编织/环氧树脂复合材料拉伸性能的影响[J]. 复合材料学报, 2010, 27(6):58-63. LI J L, HE G F, CHEN G W. Effects of temperature on tensile property of three-dimension and five-direction braided/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2010, 27(6):58-63(in Chinese).
[7] BEHERA B K, DASH B P. Mechanical behavior of 3D woven composites[J]. Materials & Design, 2015, 67:261-271.
[8] LI D, YANG Y, WANG Z, et al. Experimental investigation on mechanical response and failure analysis of 3D multi-axial warp knitted hybrid composites[J]. Composite Structures, 2020, 246:112340.
[9] LI D, ZHAO C, GE T, et al. Experimental investigation on the compression properties and failure mechanism of 3D braided composites at room and liquid nitrogen temperature[J]. Composites Part B:Engineering, 2014, 56:647-659.
[10] 郑锡涛,孙秦,柴亚南,等. 复合材料编织接头承载能力的试验研究[J]. 航空学报, 2007,28(2):348-351. ZHENG X T, SUN Q, CHAI Y N, et al. Failure load of load-bearing joints in three-dimensional braided composites[J]. Acta Aeronautica et Astronautica Sinica, 2007,28(2):348-351(in Chinese).
[11] 刘振国,林强,亚纪轩,等. 三维全五向编织耳片接头力学性能试验研究[J]. 航空学报, 2016, 37(7):2225-2233. LIU Z G, LIN Q, YA J X, et al. Experimental research on mechanical properties of 3D full 5-direactional braided composites lugs[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2225-2233(in Chinese).
[12] 刘杰,李海滨,刘小瀛. 3D针刺C/SiC复合材料螺栓的低成本制备及力学性能[J]. 航空学报, 2013, 34(7):1724-1730. LIU J, LI H B, LIU X Y. Low cost preparation and mechanical property of three-dimensional needled C/SiC bolts[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1724-1730(in Chinese).
[13] 朱文墨,李刚,杨小平,等. 连续纤维增强树脂复合材料纵向压缩强度预测模型的发展及其影响因素[J]. 复合材料学报, 2020, 37(1):1-15. ZHU W M, LI G, YANG X P, et al. Development of prediction model and influencing factors of longitudinal compressive strength for continuous fiber reinforced polymer composites[J]. Acta Materiae Compositae Sinica, 2020, 37(1):1-15(in Chinese).
[14] 孟松鹤,韦利明,许承海,等. 三维C/C复合材料的压缩性能及破坏机制[J]. 复合材料学报, 2009, 26(6):91-96. MENG S H, WEI L M, XU C M, et al. Compressive properties and failure mechanism of 3D C/C composites[J]. Acta Materiae Compositae Sinica, 2009, 26(6):91-96(in Chinese).
[15] 刘鹏,郭亚洲,赵振强,等. 二维三轴编织复合材料压缩失效行为的细观有限元模拟[J]. 航空学报, 2019, 40(7):222865. LIU P, GUO Y Z, ZHAO Z Q, et al. Meso-scale finite element simulation of compressive failure behavior of two-dimensional triaxially braided composite[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):222865(in Chinese).
[16] HE C, GE J, ZHANG B, et al. A hierarchical multiscale model for the elastic-plastic damage behavior of 3D braided composites at high temperature[J]. Composites Science and Technology, 2020, 196:108230.
[17] 胡银生,余欢,徐志锋,等. 2.5D-Cf/Al复合材料的经向高温力学性能及其变形断裂行为[J]. 中国有色金属学报, 2020, 30(3):507-517. HU Y S, YU H, XU Z F, et al. High temperature mechanical properties and deformation fracture behavior in warp direction of 2.5-Cf/Al composites[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3):507-517(in Chinese).
[18] 冯景鹏,余欢,徐志锋,等. 三维正交Cf/Al复合材料的显微组织与弯曲性能[J]. 特种铸造及有色合金, 2020, 40(2):202-206. FENG J P, YU H, XU Z F, et al. Microstructure and bending properties of three-dimensional orthogonal Cf/Al composites[J]. Special Casting & Nonferrous Alloys, 2020, 40(2):202-206(in Chinese).
[19] 胡银生,余欢,王振军,等. 织物结构对2.5D-Cf/Al复合材料微观组织与力学性能的影响[J]. 中国有色金属学报, 2018, 28(12):2512-2522. HU Y S, YU H, WANG Z J, et al. Effect of woven fabric structure on microstructure and mechanical properties of 2.5D-Cf/Al composites[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(12):2512-2522(in Chinese).
[20] 帅亮,余欢,徐志锋,等. 织物结构对Cf/Al复合材料微观组织与压缩性能的影响[J]. 特种铸造及有色合金, 2020, 40(4):409-414. SHUAI L, YU H, XU Z F, et al. Effect of fabric structure on microstructure and compressive properties of Cf/Al composites[J]. Special Casting & Nonferrous Alloys, 2020, 40(4):409-414(in Chinese).
[21] LI D, CHEN G, JIANG L, et al. Mechanical property of M40Jf/5A06Al composite at elevated temperatures[J]. Acta Metallurgica Sinica, 2015, 28(9):1175-1182.
文章导航

/