材料工程与机械制造

GEO卫星多层隔热组件充放电特性仿真

  • 冯娜 ,
  • 季启政 ,
  • 张絮洁 ,
  • 唐小金 ,
  • 张宇 ,
  • 杨勇 ,
  • 唐旭
展开
  • 1. 北京东方计量测试研究所, 北京 100086;
    2. 中国人民解放军陆军工程大学石家庄校区, 石家庄 050003;
    3. 北京卫星环境工程研究所, 北京 100094

收稿日期: 2020-06-29

  修回日期: 2020-07-16

  网络出版日期: 2020-09-14

基金资助

装备预研重点实验室基金项目(61422050102)

Simulation of internal charging characteristics for multi-layer thermal insulation in GEO satellites

  • FENG Na ,
  • JI Qizheng ,
  • ZHANG Xujie ,
  • TANG Xiaojin ,
  • ZHANG Yu ,
  • YANG Yong ,
  • TANG Xu
Expand
  • 1. Beijing Orient Institute for Measurement&Test, Beijing 100086, China;
    2. Army Engineering University of PLA Shijiazhuang Campus, Shijiazhuang 050003, China;
    3. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China

Received date: 2020-06-29

  Revised date: 2020-07-16

  Online published: 2020-09-14

Supported by

Equipment Development Department Key Laboratory Pre-research Foundation (61422050102)

摘要

多层隔热组件包覆于卫星外表面,占据了整星表面的60%以上,既是必要的热控组件,也是抑制空间强电磁环境源的重要载体。相较于卫星内部组件,星表直接面临高能粒子的冲击与作用,导致其在轨面临的静电威胁极为严峻。其本质原因是高能电子穿透多层隔热组件的面膜,沉积于多层组件内部间隔层,进而在介质材料层形成了内建电场,造成静电放电效应。针对多层隔热组件的复合结构特点,建立了合理优化的内带电物理模型及其计算模型,模拟了GEO环境电子在典型多层隔热组件电子输运过程,进而计算明晰了间隔层涤纶网的电场分布特性。结果表明,在GEO恶劣电子辐射环境下,多层涤纶网充电电场强度可高达9.7×108 V/m,存在放电风险;涤纶网接地边、角处的电场强度最高且电场畸变幅度巨大;多层充放电风险主要来自涤纶网与反射屏之间的非紧密接触而伴随的不良接地情况,建议通过加密棉线缝合间距以提升涤纶网与反射屏的接触效果,从而降低多层的充放电风险。

本文引用格式

冯娜 , 季启政 , 张絮洁 , 唐小金 , 张宇 , 杨勇 , 唐旭 . GEO卫星多层隔热组件充放电特性仿真[J]. 航空学报, 2021 , 42(9) : 424469 -424469 . DOI: 10.7527/S1000-6893.2020.24469

Abstract

Covering more than 60% of the satellite surface, multi-layer thermal insulation is an important medium in restraining the sources of strong electromagnetic environment in space, as well as a necessary thermal control component. Compared with internal components, the satellite surface is directly impacted and acted upon by energetic particles, resulting in a serious electrostatic threat on orbit. The high energy electrons can easily penetrate the milli-meter thin film of the multi-layer insulation, deposit on the internal dielectric material of the insulation and finally form electric fields. According to the composite structure characteristics of multi-layer thermal insulation components, the reasonably optimized internal charged physical model and calculation model are established to simulate the electronic transport process of GEO environmental electrons in typical multi-layer thermal insulation components, and the electric field distribution characteristics of different layers are calculated. The simulation results show that the charging potential of the multi-layer spacer polyester mesh can be as high as 9.7×108 V/m in the worst GEO electron radiation environment, where a risk of discharge exists. The strengths of the electric fields at the grounding edge and the corner of the polyester mesh are the highest and the amplitude of the electric field distortion is huge. The risk of multi-layer charge and discharge mainly comes from the poor grounding caused by the non-intimate contact between the polyester mesh and the reflective screen. It is recommended to increase the contact effect of the polyester mesh and the reflective screen by shortening the stitching distance of the cotton thread to reduce the risk of multi-layer charge and discharge.

参考文献

[1] 孙慧, 徐抒岩, 孙守红, 等. 多层隔热组件的制作工艺[J]. 宇航材料工艺, 2011, 41(3):81-83. SUN H, XU S Y, SUN S H, et al. Processing of multilayer insulation blankets[J]. Aerospace Materials & Technology, 2011, 41(3):81-83(in Chinese).
[2] TONON C, DUVIGNACQ C, TEYSSEDRE G, et al. Degradation of the optical properties of ZnO-based thermal control coatings in simulated space environment[J]. Journal of Physics D:Applied Physics, 2001, 34:124-130.
[3] BITETTI G, MARCHETTI M, MILETI S, et al. Degradation of the surfaces exposed to the space environment[J]. Acta Astronautica, 2007, 60(3):166-174.
[4] KOONS H C, MAZUR J E, SELESNICK R S, et al. The impact of the space environment on space systems:Aerospace Technical Report TR-99(1670)-1[R]. 1999.
[5] 石进峰, 吴清文, 陈立恒, 等. 多层隔热材料飞行试验研究综述[J]. 中国光学, 2013, 6(4):457-469. SHI J F, WU Q W, CHEN L H, et al. Review of flight tests for multi-layer insulator materials[J]. Chinese Journal of Optics, 2013, 6(4):457-469(in Chinese).
[6] GREGORY W, DENNISON J R, AMBERLY E J, et al. Electron energy dependent charging effects of multilayered dielectric materials[J]. IEEE Transactions on Plasma Science, 2013, 41(12):3536-3544.
[7] 左颖萍, 周传君, 朱兴鸿, 等. 卫星多层隔热组件表面等电位控制工艺[J]. 航天器环境工程, 2018, 35(2):195-199. ZUO Y P, ZHOU C J, ZHU X H, et al. Process for surface equipotential control of satellite multilayer insulation[J]. Spacecraft Environment Engineering, 2018, 35(2):195-199(in Chinese).
[8] PAYAN D, REULET R, DIRASSEN B. Elecrtostatic behavior of dielectrics under GEO-like charging space environment simulated in laboratory[C]//Proceedings of 9th Spacecraft Charging Technology Conference, 2005.
[9] XIANG Q Y, CHEN H F, ZONG Q G, et al. Leakage current of grounded dielectrics in electron radiation as a diagnostic method to evaluate the deep charging hazards in space[J]. IEEE Transactions on Nuclear Science, 2016, 63(2):1306-1313.
[10] FERGUSON D C. New frontiers in spacecraft charging[J]. IEEE Transactions on Plasma Science, 2012, 40(2):139-143.
[11] HODGES J L, SIM A M, DEKANY J, et al. In situ surface voltage measurements of dielectrics under electron beam irradiation[J]. IEEE Transactions on Plasma Science, 2014, 42(1):255-265.
[12] WILSON G, DENNISON J R. Approximation of range in materials as a function of incident electron energy[J]. IEEE Transactions on Plasma Science, 2012, 40(2):305-310.
[13] 刘浩, 刘尚合, 苏银涛, 等, 基于网格状ITO薄膜的航天器太阳电池阵静电放电防护[J]. 航天器工程, 2015, 36(10):3494-3500. LIU H, LIU S H, SU Y T, et al. Electrostatic discharge protection of spacecraft solar cell array based on meshed ITO film[J]. Spacecraft Engineering, 2015, 36(10):3494-3500(in Chinese).
[14] 赵欣. 多层隔热组件等效热物性参数的分析[J]. 航天器工程, 2008, 17(4):51-55. ZHAO X. Analysis ofequivalent thermal properties of MLI[J]. Spacecraft Engineering, 2008, 17(4):51-55(in Chinese).
[15] GREEN N W, DENNISON J R. Deep dielectric charging of spacecraft polymers by energetic protons[J].IEEE Transactions on Plasma Science, 2008, 36(5):2482-2490.
[16] 原青云, 王松, 黄欣鑫. 航天器介质盘环结构内带电特性三维仿真分析[J].航空学报, 2019, 40(9):323035. YUAN Q Y, WANG S, HUANG X X. 3-D simulation of internal dielectric charging characteristics of spacecraft dielectric disc structure[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9):323035(in Chinese).
[17] 王松, 易忠, 唐小金, 等. 地球同步轨道环境下外露介质深层带电仿真分析[J]. 高电压技术, 2015, 41(2):687-692. WANG S, YI Z, TANG X J, et al. Analysis of exposed dielectric bulk charging in geosynchronous orbit environment via computer simulation[J]. High Voltage Engineering, 2015, 41(2):687-692(in Chinese).
[18] GREEN N W, DENNISON J R. Deep dielectric charging of spacecraft polymers by energetic protons[J]. IEEE Transactions on Electrical Insulation, 1992, 5(5):944-960.
[19] RODGERS D J, HUNTER K A, WRENN G L. The FLUMIC electron environment model[C]//Proceedings of 8th SCTC, 2003.
[20] SESSLER G M, FIGUEIREDO M T, LEAL FERREIRA G F. Models of charge transport in electron-bream irradiated insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(2):192~202.
[21] 赵宇, 颜吟雪, 刘业楠. 极轨航天器多层外表面充放电效应试验研究[J]. 航天器环境工程,2015, 32(6):616-620. ZHAO Y, YAN Y X, LIU Y N. Test of charging & discharging effects of multilayer insulation for spacecraft in sun-synchronous orbit[J]. Spacecraft Environment Engineering, 2015, 32(6):616-620(in Chinese).
[22] GRISERI1 V, PERRIN C, FUKUNAGA K, et al. Analysis of electron behaviour in polymeric films during electronic irradiation[C]//2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2005:645-648.
文章导航

/