固体力学与飞行器总体设计

低压储能的升浮一体飞行器总体参数研究

  • 李冠雄 ,
  • 王靖宇 ,
  • 王运涛
展开
  • 1. 四川大学 空天科学与工程学院, 成都 610065;
    2. 四川大学 视觉合成图形图像技术国防重点学科实验室, 成都 610065

收稿日期: 2020-06-19

  修回日期: 2020-07-24

  网络出版日期: 2020-09-14

基金资助

四川省科技计划项目(2020YJ0019);四川省重大科技专项课题(2019YFG0382);四川省科技计划项目(2019YJ0294)

Parametric study on buoyancy-lifting aerial vehicle with low pressure energy storage method

  • LI Guanxiong ,
  • WANG Jingyu ,
  • WANG Yuntao
Expand
  • 1. School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China;
    2. National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610065, China

Received date: 2020-06-19

  Revised date: 2020-07-24

  Online published: 2020-09-14

Supported by

Sichuan Science and Techonology Program (2020YJ0019); Sichuan Major Science and Technology Program (2019YFG0382); Sichuan Science and Technology Program (2019YJ0294)

摘要

升浮一体飞行器是一种综合了太阳能无人机和平流层飞艇特点的新型临近空间飞行器,是航空航天领域研究的热点,可再生燃料电池是升浮一体飞行器最有发展前景的储能装置。针对现有燃料电池中氢气和氧气存储方式的缺陷,充分利用升浮一体飞行器巨大的机身体积,提出了采用低压气囊储气的燃料电池方案,建立了升浮一体飞行器总体参数计算模型,提出常规燃料电池和气囊储气燃料电池的理论计算方法。研究了不同储气方式对升浮一体飞行器的能源系统以及飞行器总体参数的影响。研究表明,采用低压储气方法后,氢气的质量储气密度可提高至13.0%,燃料电池存储能量为1 489.7 kWh条件下,能量密度可达到1 000 Wh/kg以上,对减小升浮一体飞行器总重和外形尺寸、提高飞行器载荷能力有显著作用。

本文引用格式

李冠雄 , 王靖宇 , 王运涛 . 低压储能的升浮一体飞行器总体参数研究[J]. 航空学报, 2021 , 42(7) : 224438 -224438 . DOI: 10.7527/S1000-6893.2020.24438

Abstract

The buoyancy-lifting aerial vehicle, a novel near-space aircraft with characteristics of both the solar aircraft and the stratospheric airship, has become a research hotspot in the field of aeronautics and astronautics. The regenerative fuel cell is the most promising energy storage device for the buoyancy-lifting aerial vehicle. Aiming at the defects of the hydrogen and oxygen storage method of existing fuel cells, we propose a scheme of fuel cells with low pressure gasbags, fully utilizing the huge fuselage volume of the buoyancy-lifting aerial vehicle. The calculation model of the general parameters of the vehicle is established, and the theoretical calculation methods for conventional fuel cells and the fuel cells with gasbags are proposed. Effects of the energy storage methods on the energy system and the general parameters of the aircraft are studied. Results show that the low pressure energy storage method can increase the mass storage density of the hydrogen to 13.0%; when the stored energy of the fuel cell is 1 489.7 kWh, the specific energy can reach more than 1 000 Wh/kg, leading to significant reduction in the total weight and the overall dimension of the buoyancy-lifting aerial vehicle and improvement in the load capacity of the vehicle.

参考文献

[1] MOHAMMAD I A, RAJKUMAR S P. A methodology for conceptual design and optimization of a high altitude airship[C]//AIAA Lighter-Than-Air Systems Technology (LTA) Conference (AIAA).Reston:AIAA, 2013.
[2] 赵达,刘东旭,孙康文,等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报, 2016, 37(1):45-56. ZHAO D, LIU D X, SUN K W, et al. Research status, technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):45-56(in Chinese).
[3] VERMA A R, SAGAR K K, PRIYADARSHI P. Optimum buoyant and aerodynamic lift for a lifting-body hybrid airship[J]. Journal of Aircraft, 2014, 51(5):1345-1350.
[4] 孟军辉, 张一, 刘东旭, 等. 升力体式浮升混合飞艇设计及参数分析[J]. 航空学报, 2015, 36(5):1500-1510. MENG J H, ZHANG Y, LIU D X, et al. Design and parameter analysis of liftbody-type buoyancy-lifting hybrid airships[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1500-1510(in Chinese).
[5] ANDAN A D, ASRAR W, OMAR A A. Investigation of aerodynamic parameters of a hybrid airship[J]. Journal of Aircraft, 2012, 49(2):658-662.
[6] ASRAR W, OMAR A A, SULEIMAN E, et al. Static longitudinal stability of a hybrid airship[C]//Proceedings of 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST).Piscataway:IEEE Press,2014.
[7] MACKRODT P A. Further studies in the concept of delta-winged hybrid airships[J]. Journal of Aircraft, 2015, 17(10):734-740.
[8] CLARK F M, CHRISTNER G M. Semi-buoyant aircraft:US4052025[P]. 1977-04-10.
[9] HAQUE A U, ASRAR W, OMAR A A, et al. Conceptual design of a winged hybrid airship[C]//21st AIAA Lighter Than Air System Technology Conference.Reston:AIAA, 2014.
[10] ZHANG L, LV M, MENG J, et al. Optimization of solar-powered hybrid airship conceptual design[J]. Aerospace Science and Technology, 2017, 65:54-61.
[11] 杨穆清,马东立,李毅波,等. 升浮一体飞行器总体参数设计方法[J]. 航空学报, 2015, 36(11):3567-3577. YANG M Q, MA D L, LI Y B, et al. General parameters design method of buoyancyl-ifting aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3567-3577(in Chinese).
[12] MILLER G D, STOIA T R, HARMALA D A, et al. Operational capability of high altitude solar powered airships[C]//AIAA 5th ATIO and 16th Lighter-Than-Air Systen Technology and Balloon Systems Conferences.Reston:AIAA, 2005.
[13] DIHRAB S, KHATIB T, SOPIAN K, et al. On the performance of hybrid pv/unitized regenerative fuel cell system in the tropics[J]. International Journal of Photoenergy, 2012(8):804-813.
[14] LEI T, YANG Z, LIN Z, et al. State of art on energy management strategy for hybrid-powered unmanned aerial vehicle[J]. Chinese Journal of Aeronautics, 2019, 32(6):1488-1503.
[15] DIHRAB S S, ABDULATEEF J, IBRAHIMI K, et al. Theoretical study on a solar powered unitized regenerative fuel cell system[J].Recent Advance in Applied Mathematics, 2010,1:552-558.
[16] SCHMITT M L, SHELBY J E, HALL M M. Preparation of hollow glass microspheres from sol-gel derived glass for application in hydrogen gas storage[J]. Journal of Non-Crystalline Solids, 2006, 352(2006):626-631.
[17] CHENG H, YANG Q, LIU C. Hydrogen storage in carbon nanotubes[J]. Carbon, 2001, 39(10):1447-1454.
[18] RÖNNEBRO E. Development of group Ⅱ borohydrides as hydrogen storage materials[J]. Current Opinion in Solid State and Materials Science, 2011, 15(2):44-51.
[19] VERSTRAETE D, HENDRICK P, PILIDIS P, et al. Hydrogen fuel tanks for subsonic transport aircraft[J]. International Journal of Hydrogen Energy, 2010, 35(20):11085-11098.
[20] LI G, MA D, YANG M. Research of near space hybrid power airship with a novel method of energy storage[J]. International Journal of Hydrogen Energy, 2015, 40(30):9555-9562.
[21] ZHANG L, LV M, ZHU W, et al. Mission-based multidisciplinary optimization of solar-powered hybrid airship[J]. Energy Conversion and Management, 2019, 185:44-54.
[22] NEMATOLLAHI O, ALAMDARI P, JAHANGIRI M, et al. A techno-economical assessment of solar/wind resources and hydrogen production:A case study with GIS maps[J]. Energy, 2019, 175:914-930.
[23] 任一鹏,田中伟,吴子牛. 飞艇空气动力学及其相关问题[J]. 航空学报, 2010, 31(3):431-443. REN Y P, TIAN Z W, WU Z N. Some aerodynamics problems of airship[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):431-443(in Chinese).
[24] LIANG H Q,ZHU M,GUO X, et al. Conceptual design optimization of high altitude airship in concurrent subspace optimization[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Reston:AIAA, 2012.
[25] COLOZZA A, DOLCE J L. High-altitude, long-endurance airships for coastal surveillance:NASA/TM-2005-213427[R]. Washington,D.C.:NASA, 2005.
[26] ZÜTTEL A. Materials for hydrogen storage[J]. Materials Today, 2003, 6(9):24-33.
[27] TURGUT E T, ROSEN M A. Partial substitution of hydrogen for conventional fuel in an aircraft by utilizing unused cargo compartment space[J]. International Journal of Hydrogen Energy, 2010, 35(3):1463-1473.
[28] 马东立,张良,杨穆清,等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3):623418. MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):623418(in Chinese).
[29] 朱立宏,孙国瑞,呼文韬,等. 太阳能无人机能源系统的关键技术与发展趋势[J]. 航空学报, 2020, 41(3):623503. ZHU L H, SUN G R, HU W T, et al. Key technology and development trend of energy system in solar powered unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):623503(in Chinese).
文章导航

/