流体力学与飞行力学

面向稀薄流非线性本构预测的机器学习方法

  • 李廷伟 ,
  • 张莽 ,
  • 赵文文 ,
  • 陈伟芳 ,
  • 蒋励剑
展开
  • 1. 浙江大学 航空航天学院, 杭州 310027;
    2. 中国电子科技集团公司第五十四研究所 航天系统与应用专业部, 石家庄 050081;
    3. 中国运载火箭技术研究院 研究与发展中心, 北京 100076

收稿日期: 2020-06-09

  修回日期: 2020-07-02

  网络出版日期: 2020-09-14

基金资助

国家数值风洞项目(NNW2019ZT3-A08);国家自然科学基金(6162790014)

Machine learning method for correction of rarefied nonlinear constitutive relations

  • LI Tingwei ,
  • ZHANG Mang ,
  • ZHAO Wenwen ,
  • CHEN Weifang ,
  • JIANG Lijian
Expand
  • 1. College of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China;
    2. Department of Aerospace Systems and Applications, The 54 th Research Institute of CETC, Shijiazhuang 050081, China;
    3. Research & Development Center, China Academy of Launch Vehicle Technology, Beijing 100076, China

Received date: 2020-06-09

  Revised date: 2020-07-02

  Online published: 2020-09-14

Supported by

National Numerical Wind Tunnel Project (NNW2019ZT3-A08); National Natural Science Foundation of China (61627902014)

摘要

稀薄非平衡流域内连续介质假设已经失效,主要围绕Boltzmann方程及模型方程对稀薄非平衡流开展理论与计算研究,统一气体动理论格式(UGKS)是其中一种代表性方法。在稀薄非平衡流数值模拟中,Navier-Stokes (N-S)方程连续介质假设已经失效,不能有效描述流场非平衡特征。UGKS方法虽然计算精度高,但速度空间离散导致计算效率低下,多维高速条件下数值计算难以开展。基于数据驱动的思想,在N-S方程与UGKS方法的研究基础上发展出了一种稀薄非平衡流非线性本构关系求解方法(DNCR)。该方法以N-S与UGKS求解器获得的流场数值模拟计算结果作为训练数据集,基于流场特征参数采用极端随机树算法生成机器学习模型,对预测流场中线性黏性应力项与热流项进行非线性修正,并耦合非线性本构关系求解宏观守恒方程得到目标状态稀薄非平衡流动数值解。针对DNCR方法中所采用的机器学习方法-极端随机树模型,通过二维顶盖驱动方腔流算例对高维非线性建模涉及的特征参数选取、参数调优开展了相关验证工作,选取若干典型状态对极端随机树模型的泛化性能开展研究,并评估了相关模型与方法的计算精度与计算效率。

本文引用格式

李廷伟 , 张莽 , 赵文文 , 陈伟芳 , 蒋励剑 . 面向稀薄流非线性本构预测的机器学习方法[J]. 航空学报, 2021 , 42(4) : 524386 -524386 . DOI: 10.7527/S1000-6893.2020.24386

Abstract

The continuum medium hypothesis in the rarefied non-equilibrium flow field has been invalid, and the rarefied non-equilibrium flow is mainly researched around the Boltzmann equation with the Unified Gas-Kinetic Scheme (UGKS) as a representative method. In numerical simulation of the rarefied non-equilibrium flow, the Navier-Stokes (N-S) equation has high efficiency but low accuracy while the UGKS method has high accuracy but low efficiency. In this paper, a Data-driven method for the solution of the Nonlinear Constitutive Relations of the rarefied non-equilibrium flow based on the N-S equation and the UGKS method (DNCR) is proposed. The flow field numerical simulation results of the N-S solver and the UGKS solver are used as the data set. Based on the characteristic parameters of the flow field, an extremely randomized trees algorithm is adopted to nonlinearly correct the linear viscous stress term and heat flux term of the N-S equation. The numerical solution of the rarefied non-equilibrium flow is obtained by solving the N-S macro-conservation equation via coupling nonlinear constitutive relations. A two-dimensional lid-driven cavity case is used to select and tune the characteristic parameters involved in high-dimensional non-linear modeling. Several typical states are selected for the study of the generalization ability of the extremely randomized trees model. Finally, the evaluation of calculation accuracy and efficiency shows the superiority of the method proposed in this paper.

参考文献

[1] 沈青. 稀薄气体动力学[M]. 北京:国防工业出版社, 2003. SHEN Q. Rarefied gas dynamics[M]. Beijing:National Defense Industry Press, 2003(in Chinese).
[2] XU K, HUANG J. A unified gas-kinetic scheme for continuum and rarefied flows[J]. Journal of Computational Physics, 2010, 229(20):7747-7764.
[3] 刘沙, 王勇, 袁瑞峰, 等. 统一气体动理学方法研究进展[J].气体物理,2019,4(4):1-13. LIU S, WANG Y, YUAN R F, et al. Advance in unified methods based on gas-kinetic theory[J].Physics of Gases, 2019,4(4):1-13(in Chinese).
[4] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford:Clarendon Press, 1994:458.
[5] JEONG S, CHIBA K, OBAYASHI S. Data mining for aerodynamic design space:AIAA-2005-5079[R]. Reston:AIAA, 2005.
[6] KUMANO T, JEONG S, OBAYASHI S, et al. Multidisciplinary design optimization of wing shape for a small jet aircraft using Kriging model:AIAA-2006-932[R]. Reston:AIAA, 2006.
[7] CHIBA K, OBAYASHI S. Data mining for multidisciplinary design space of regional jet wing[J]. Journal of Aerospace Computing, Information, and Communication, 2007, 4:1019-1036.
[8] 陈杰, 孙刚. 基于SOM神经网络的超临界翼型设计[J].力学季刊, 2011, 32(3):411-417. CHEN J, SUN G. Supercritical airfoil design based on SOM neural network[J]. Chinese Quarterly of Mechanics, 2011, 32(3):411-417(in Chinese).
[9] 司景喆, 孙刚. 基于神经网络的风机叶片叶尖翼型设计[J].力学季刊, 2012, 33(4):672-678. SI J Z, SUN G. Design of wind turbine blade based on SOM[J]. Chinese Quarterly of Mechanics, 2012, 33(4):672-678(in Chinese).
[10] MILANO M, KOUMOUTSAKOS P. Neural network modeling for near wall turbulent flow[J]. Journal of Computational Physics, 2002, 182(1):1-26.
[11] YARLANKI S, RAJENDRAN B, HAMANN H. Estimation of turbulence closure coefficients for data centers using machine learning algorithms[C]//13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2012:38-42.
[12] TRACEY B, DURAISAMY K, ALONSO J J. A machine learning strategy to assist turbulence model development[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015.
[13] LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166.
[14] XIAO H, WU J, WANG J, et al. Quantifying and reducing model-form uncertainties in reynolds averaged navier-stokes equations:a data-driven, physics-informed bayesian approach[J]. Journal of Computational Physics, 2016, 324:115-136.
[15] EDELING W N, CINNELLA P, DWIGHT R P, et al. Bayesian estimates of parameter variability in the k-ε turbulence model[J]. Journal of Computational Physics, 2014, 258:73-94.
[16] WANG Z, LAN C E, BRANDON J M. Fuzzy logic modeling of nonlinear unsteady aerodynamics:AIAA-1998-4351[R]. Reston:AIAA, 1998.
[17] WANG Z, LAN C E, BRANDON J M. Fuzzy logic modeling of lateral-directional unsteady aerodynamics:AIAA-1999-4012[R]. Reston:AIAA, 1998.
[18] WANG Z, LI J, LAN C E, et al. Estimation of unsteady aerodynamic models from flight test data:AIAA-2001-4017[R]. Reston:AIAA, 2001.
[19] WANG Z, LAN C E, BRANDON J M. Estimation of lateral-directional unsteady aerodynamic models from flight test data:AIAA-2002-4626[R]. Reston:AIAA, 2002.
[20] LAN C E, LI J, YAU W, et al. Longitudinal and lateral-directional coupling effects on nonlinear unsteady aerodynamic modeling from flight data:AIAA-2002-4804[R]. Reston:AIAA, 2002.
[21] GEURTS P, ERNST D, WEHENKEL L. Extremely randomized trees[J]. Machine Learning, 2006,63(1):3-42.
[22] 王爱平, 万国伟, 程志全, 等. 支持在线学习的增量式极端随机森林分类器[J]. 软件学报, 2011,22(9):2019-2074. WANG A P, WAN G W, CHENG Z Q, et al. Incremental learning extremely random forest classifier for online learning[J].Journal of Software, 2011,22(9):2019-2074(in Chinese).
[23] 于普兵. 基于DSMC和气体动理学统一格式的激波结构模拟[C]//第十二届全国物理力学学术会议论文摘要集, 2012. YU P B. Shock structure simulation based on DSMC and unified gas kinetic scheme[C]//The 12th National Conference of Physical Mechanics, 2012(in Chinese).
[24] 赵文文. 高超声速流动Burnett方程稳定性与数值计算方法研究[D]. 杭州:浙江大学,2014. ZHAO W W. Linearized stability analysis and numerical computation of Burnett equations in hypersonic flow[D]. Hangzhou:Zhejiang University,2014(in Chinese).
[25] 李航.统计学习方法[M].北京:清华大学出版社, 2012. LI H. Statistical learning methods[M]. Beijing:Tsinghua University Press, 2012(in Chinese).
[26] 张振亚, 王进, 程红梅, 等. 基于余弦相似度的文本空间索引方法研究[J].计算机科学, 2005,32(9):160-163. ZHANG Z Y, WANG J, CHENG H M, et al. An approach for spatial index of text information based on cosine similarity[J].Computer Science, 2005,32(9):160-163(in Chinese).
[27] 贾怀勤. 应用统计[M]. 北京:对外经济贸易大学出版社,2010. JIA H Q. Applied Statistics[M]. Beijing:University of International Business and Economics Press, 2010(in Chinese).
文章导航

/