固体力学与飞行器总体设计

垂尾抖振响应的鲁棒-FxLMS主动控制试验

  • 刘昊 ,
  • 王巍 ,
  • 金伟 ,
  • 牛文超 ,
  • 杨智春
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 成都飞机设计研究所, 成都 610091

收稿日期: 2020-04-14

  修回日期: 2020-08-18

  网络出版日期: 2020-09-14

基金资助

陕西省自然科学基础研究计划项目(2018JQ1041)

Experiments of RFxLMS control for vertical tail buffeting

  • LIU Hao ,
  • WANG Wei ,
  • JIN Wei ,
  • NIU Wenchao ,
  • YANG Zhichun
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Chengdu Aircraft Design and Research Institute, Chengdu 610091, China

Received date: 2020-04-14

  Revised date: 2020-08-18

  Online published: 2020-09-14

Supported by

Natural Science Basic Research Program of Shaanxi Province (2018JQ1041)

摘要

针对垂尾模型低阶模态抖振响应的主动控制问题,设计鲁棒控制器对次级通道进行反馈式阻尼补偿,建立了多模态的RFxLMS控制器,采用宏纤维复合材料压电作动器,开展了垂尾抖振响应压电主动控制的地面模拟试验。试验结果表明,RFxLMS控制器具有收敛速度快、控制效果好的优点,并且相比于单独的FxLMS控制器或鲁棒控制器,对垂尾抖振响应具有更好的控制效果。进一步开展了垂尾抖振响应主动控制的风洞试验。结果表明,RFxLMS控制器在多个试验工况下均有稳定的控制效果,并提升了控制系统的性能,垂尾抖振受控响应的RMS值比无控响应的RMS值降低了39.7%~48.1%。

本文引用格式

刘昊 , 王巍 , 金伟 , 牛文超 , 杨智春 . 垂尾抖振响应的鲁棒-FxLMS主动控制试验[J]. 航空学报, 2021 , 42(2) : 224090 -224090 . DOI: 10.7527/S1000-6893.2020.24090

Abstract

Based on the feedback secondary path damping compensation method, the performance of the FxLMS controller is improved by combining the robust controller with the FxLMS algorithm. Aiming at the control problem of the low-order mode buffeting response of the vertical tail model, we design a robust controller to perform feedback damping compensation on the secondary path, establishing subsequently the multi-mode RFxLMS controller. A ground simulation experiment of vertical tail buffeting active control shows that the RFxLMS controller has faster convergence speed and better convergence accuracy compared with FxLMS controller or robust controller, therefore having a better control effect on vertical tail buffeting. A wind tunnel experiment of vertical tail buffeting active control reveals that the RFxLMS controller has a stable control effect and improves the performance of the control system. The RMS value of the acceleration response is reduced by 39.7%-48.1%.

参考文献

[1] 金伟, 杨智春, 孟德虹,等. 先进战斗机全动V尾抖振动强度设计与验证[J]. 航空学报, 2020, 41(6):523473. JIN W, YANG Z C, MENG D H, et al. Strength desigh and test of advanced fighter all-moving twin V-tail buffet[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523473(in Chinese).
[2] CHEN Y, WICKRAMASINGHE V, ZIMCIK D. Active control of a hybrid actuation system for aircraft vertical fin buffet load alleviation[J]. The Aeronautical Journal, 2006, 110(1107):315-326.
[3] CHEN Y, ULKER F D, WICKRAMASINGHE V, et al. Development of robust control law for active buffeting load alleviation of smart fin structures[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(7):818-831.
[4] 王巍, 杨智春, 张新平. 垂尾抖振响应主模态控制的地面模型试验[J]. 振动、测试与诊断, 2013, 33(3):456-460. WANG W, YANG Z C, ZHANG X P. Design of fin buffeting piezoelectric active alleviation system and ground model testing[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(3):456-460(in Chinese).
[5] 梁力. 垂尾抖振的压电主动控制方法研究[D]. 西安:西北工业大学, 2016. LIANG L. Study on active control of vertical tail buffet with piezoelectric actuators[D]. Xi'an:Northwestern Polytechnical University, 2016(in Chinese).
[6] 牛文超, 李斌, 高振宇,等. 基于一阶PPF的垂尾振动分数阶控制[J]. 航空学报, 2018, 39(8):221884. NIU W C, LI B, GAO Z Y. Fractional order control of vertical tail vibration based on first-order PPF[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8):221884(in Chinese).
[7] 赵天, 杨智春, 刘昊,等. 压电陶瓷叠层作动器迟滞蠕变非线性自适应混合补偿控制方法[J]. 航空学报, 2018, 39(12):222308. ZHAO T, YANG Z C, LIU H, et al. Hysteresis and creep nonlinearities modeling and adaptive hybrid compensation control of piezoelectric stack actuators[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):222308(in Chinese).
[8] ARDEKANI I T, ABDULLA W H. Effects of imperfect secondary path modeling on adaptive active noise control systems[J]. IEEE Transactions on Control Systems Technology, 2012, 20(5):1252-1262.
[9] 李嘉全, 王永. 一种新的滤波X-LMS算法研究[J]. 振动与冲击, 2008, 27(3):5-7. LI J Q, WANG Y. Study on filtered X-LMS algorithm[J]. Journal of Vibration and Shock, 2008, 27(3):5-7(in Chinese).
[10] 李嘉全, 王永, 梁青. 基于次级通道前馈等效阻尼补偿的改进滤波x-LMS算法[J]. 振动与冲击, 2009, 28(4):113-116. LI J Q, WANG Y, LIANG Q. An improved filtered x-LMS algorithm based on feedforward damping compensation of secondary path[J]. Journal of Vibration and Shock, 2009, 28(4):113-116(in Chinese).
[11] ZAMES G. Feedback and optimal sensitivity:Model reference transformations, multiplicative seminorms, and approximate inverses[J]. IEEE Transactions on Automatic Control, 1981, 26(2):301-320.
[12] PACKARD A, DOYLE J. The complex structured singular value[J]. Automatica, 1993, 29(1):71-109.
[13] 梅振景. 直升机结构响应鲁棒控制研究[D]. 南京:南京航空航天大学, 2007. MEI Z J. Study on robust vibration control for helicopter structure[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).
[14] 段丽玮, 汤忠梁, 吴志华. 飞行器垂直尾翼H鲁棒振动主动控制[J]. 振动、测试与诊断, 2011, 31(3):119-123,133. DUAN L W, TANG Z L, WU Z H. Active vibration suppression of vertical tail using H robust control theory[J]. Journal of Vibration, Measurement & Diagnosis, 2011, 31(3):119-123,133(in Chinese)
[15] 张子健, 徐敏, 陈士橹. 机翼颤振的混合灵敏度H鲁棒控制器设计[J]. 计算力学学报, 2010, 27(4):661-666. ZHANG Z J, XU M, CHEN S L. Mixed sensitivity Hcontroller designing for active flutter suppression[J]. Chinese Journal of Computational Mechanics, 2010, 27(4):661-666(in Chinese).
[16] WIDROW B, STEARNS D. Adaptive signal processing[M]. NewJersey:Prentice-Hall, 2008.
[17] 高守玮, 黄全振, 高志远,等. 参考信号自提取的振动主动控制算法[J]. 振动、测试与诊断, 2010, 30(5):514-518. GAO S W, HUANG Q Z, GAO Z Y, et al. Active vibration control algorithm using reference signal self-extraction[J]. Journal of Vibration, Measurement & Diagnosis, 2010, 30(5):514-518(in Chinese).
[18] SNYDER S D, HANSEN C H. The influence of transducer transfer functions and acoustic time delays on the implementation of the LMS algorithm in active noise control systems[J]. Journal of Sound and Vibration, 1990, 141(3):409-424.
[19] 梁力, 杨智春, 欧阳炎,等. 垂尾抖振主动控制的压电作动器布局优化[J]. 航空学报, 2016, 37(10):3035-3043. LIANG L, YANG Z C, OUYANG Y, et al. Optimization of piezoelectric actuator configuration on a vertical tail for buffeting control[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3035-3043(in Chinese).
[20] 吴志刚, 杨超. 气动伺服弹性系统不确定性建模与鲁棒稳定性[J]. 航空学报, 2003, 24(4):312-316. WU Z G, YANG C. Modeling and robust stability for aeroservoelastic systems with uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(4):312-316(in Chinese).
[21] 李幼凤, 苏宏业, 褚健. 子空间模型辨识方法综述[J]. 化工学报, 2006, 57(3):473-479. LI Y F, SU H Y, ZHU J. Overview on subspace model identification methods[J]. Journal of Chemical Industry and Engineering, 2006, 57(3):473-479(in Chinese).
[22] GLOVER K. All optimal Hankel-norm approximations of linear multivariable systems and their L∞-error bounds[J]. International Journal of Control, 1984, 39(6):1115-1193.
[23] 洪艳萍. FIR模型辨识及其过程应用研究[D]. 杭州:浙江工业大学, 2011. HONG Y P. FIR model identification algorithm with applications[D].Hangzhou:Zhejiang University of Technology, 2011(in Chinese).
文章导航

/