蜻蜓在悬停飞行过程中,通过控制翅膀的运动规律,进行前后翅相位差为180°的扑翼运动。为了分析两对翅膀之间的干涉效应对悬停气动性能的影响,利用计算流体力学手段对蜻蜓悬停状态的串列扑翼和单对翅扑翼进行模拟。通过对两种模式下的流场进行分析,并计算对比了悬停效率、气动力及气动功率的数据,发现了悬停状态下翼间干涉的气动效应:尾迹集中效应和来流偏折效应。尾迹集中效应可以减少翅膀附近的涡耗散和尾迹耗散,提高悬停效率;来流偏折效应可以通过减小后翅在下拍过程中的来流攻角,从而降低前缘涡的尺寸和强度,降低悬停功率。数值结果表明:在运动规律相同的情况下,与单独拍动的前翅和后翅进行的悬停相比,串列双翅悬停的效率分别提高了18.6%和25.5%,功率分别降低了4.8%和14.0%。
Dragonflies employ tandem-wing hovering with a phase difference of 180°. To investigate the influence of tandem-wing interactions on the aerodynamics of dragonfly hovering, we simulated two cases of tandem-wing hovering and single-wing hovering through CFD. Analyses of the flow fields and comparison of the hover efficiency, aerodynamic force and aerodynamic power of the two cases obtained the aerodynamic effects of the tandem-wing interactions: the ‘wake-gathering’ effect and ‘inflow-bending’ effect. The ‘wake-gathering’ effect can reduce vortex dissipation and wake dissipation near the wings to improve the hovering efficiency, and the ‘inflow-bending’ effect can weaken the size and strength of the leading edge vortex by reducing the angle of attack of the hindwing during the downstroke to reduce power. The numerical results show that, compared with single-forewing and single-hindwing hovering with the same kinematics, the efficiency of tandem-wing hovering is increased by 18.6% and 25.5%, respectively, and the power is reduced by 4.8% and 14.0%, respectively.
[1] ELLINGTON C P. The aerodynamics of hovering insect flight. Ⅱ. Morphological parameters[J]. Philosophical Transactions of the Royal Society of London, Series B:Biological Sciences, 1984, 305(1122):17-40.
[2] ALEXANDER D E. Unusual phase relationships between the forewings and hindwings in flying dragonflies[J]. Journal of Experimental Biology, 1984, 109(1):379-383.
[3] USHERWOOD J R, LEHMANN F O. Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl[J]. Journal of the Royal Society, Interface, 2008, 5(28):1303-1307.
[4] AZUMA A, WATANABE T. Flight performance of a dragonfly[J]. Journal of Experimental Biology, 1988, 137(1):221-252.
[5] LI Q S, ZHENG M Z, PAN T, et al. Experimental and numerical investigation on dragonfly wing and body motion during voluntary take-off[J]. Scientific Reports, 2018, 8(1):1011.
[6] ANDERSON R C. Do dragonflies migrate across the western Indian Ocean?[J]. Journal of Tropical Ecology, 2009, 25(4):347-358.
[7] 孙茂, 吴江浩. 微型飞行器的仿生流体力学:昆虫前飞时的气动力和能耗[J]. 航空学报, 2002, 23(5):385-393. SUN M, WU J H. Biomimetic aerodynamics of micro-air vehicles:aerodynamic force and power requirements in forward flight of insect[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5):385-393(in Chinese).
[8] 张锐, 周超英, 汪超, 等. 蜻蜓非对称扑动时的气动特性[J]. 航空学报, 2017, 38(12):121389. ZHANG R, ZHOU C Y, WANG C, et al. Aerodynamic characteristics of dragonfly in asymmetric flapping[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121389(in Chinese).
[9] WU J H, ZHOU C, ZHANG Y L. Aerodynamic power efficiency comparison of various micro-air-vehicle layouts in hovering flight[J]. AIAA Journal, 2016, 55(4):1265-1278.
[10] SUN M, LAN S L. A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna Juncea) hovering[J]. Journal of Experimental Biology, 2004, 207(11):1887-1901.
[11] LU Y, SHEN G X, SU W H. Flow visualization of dragonfly hovering via an electromechanical model[J]. AIAA Journal, 2007, 45(3):615-623.
[12] ZHENG Y Y, WU Y H, TANG H. An experimental study on the forewing-hindwing interactions in hovering and forward flights[J]. International Journal of Heat and Fluid Flow, 2016, 59:62-73.
[13] GUO T. Design and prototype of a hovering ornithopter based on dragonfly flight[D]. Cambridge:MIT, 2007:5-8.
[14] 侯宇飞, 李志平. 仿生正弦前缘对翼面动态失速的影响[J]. 航空学报, 2020, 41(1):123276. HOU Y F, LI Z P. Effect of bionic sinusoidal leading-edge on dynamic stall of airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123276(in Chinese).
[15] 肖贵坚, 贺毅, 黄云, 等. 基于单颗粒模型的航发叶片砂带磨削微观仿生锯齿状表面形成及实验[J]. 航空学报, 2020, 41(7):623288. XIAO G J, HE Y, HUANG Y, et al. Single particle removal model and experimental study on micro bionic zigzag surface of aeronautical blade using belt grinding[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):623288(in Chinese).
[16] NORBERG R Å. Hovering flight of the dragonfly Aeschna Juncea L., kinematics and aerodynamics[J]. Swimming and Flying in Nature, 1975:763-781.
[17] NORBERG R Å. The pterostigma of insect wings an inertial regulator of wing pitch[J]. Journal of Comparative Physiology, 1972, 81(1):9-22.
[18] AZUMA A, AZUMA S, WATANABE I, et al. Flight mechanics of a dragonfly[J]. Journal of Experimental Biology, 1985, 116(1):79-107.
[19] WAKELING J, ELLINGTON C. Dragonfly flight. Ⅱ. Velocities, accelerations and kinematics of flapping flight[J]. Journal of Experimental Biology, 1997, 200(3):557-582.
[20] WANG H, ZENG L J, LIU H, et al. Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies[J]. Journal of Experimental Biology, 2003, 206(4):745-757.
[21] ELLINGTON C P. The aerodynamics of hovering insect flight. Ⅲ. Kinematics[J]. Philosophical Transactions of the Royal Society of London, Series B:Biological Sciences, 1984, 305(1122):41-78.
[22] WANG J Z. Two dimensional mechanism for insect hovering[J]. Physical Review Letters, 2000, 85(10):2216-2219.
[23] DICKINSON M H. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422):1954-1960.
[24] SUN M. Lift and power requirements of hovering flight in drosophila virilis[J]. Journal of Experimental Biology, 2002, 205(16):2413-2427.
[25] DAVID M H, RUDDY B, FRANCISCO M, et al. Ad-vanced aerodynamic analysis of the NASA high-lift trap wing with a moving flap configuration[C]//30th AIAA Applied Aerodynamics Conference. Reston:AIAA,2012.