电子电气工程与控制

区间不确定性下的空中作战行动过程优选方法

  • 钟赟 ,
  • 万路军 ,
  • 张杰勇
展开
  • 1. 中国人民解放军94040部队, 库尔勒 841000;
    2. 空军工程大学 信息与导航学院, 西安 710077;
    3. 空军工程大学 空管领航学院, 西安 710051;
    4. 中国电科28所 空中交通管理系统与技术国家重点实验室, 南京 210007

收稿日期: 2020-05-25

  修回日期: 2020-07-20

  网络出版日期: 2020-09-04

基金资助

国家自然科学基金(61703425)

Optimized selection method for air combat course of action with interval uncertainty

  • ZHONG Yun ,
  • WAN Lujun ,
  • ZHANG Jieyong
Expand
  • 1. Unit 94040 of PLA, Korla 841000, China;
    2. Information and Navigation College, Air Force Engineering University, Xi'an 710077, China;
    3. Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an 710051, China;
    4. State Key Laboratory of Air Traffic Management Systems and Technologies, CETC 28, Nanjing 210007, China

Received date: 2020-05-25

  Revised date: 2020-07-20

  Online published: 2020-09-04

Supported by

National Natural Science Foundation of China (61703425)

摘要

针对空中作战行动过程(COA)设计问题,根据动态影响网(DINs)理论和改进快速非支配排序遗传(NSGA-Ⅱ)算法,提出一种基于DINs和区间多目标优化的空中作战过程优选方法。首先,分析空中作战过程基本概念,分别进行静态和动态建模,并对参数不确定性进行分析。然后,基于改进Kendall协和系数检验法确定一致性检验后的关键参数,设计DINs概率传播算法。随后,分析期望效果实现概率与各关键参数的相关关系,在分析行动过程优选效果评价指标基础上,采用改进NSGA-Ⅱ算法对模型进行求解。最后,通过多组仿真案例,验证了模型的合理性,以及算法的有效性和优越性。

本文引用格式

钟赟 , 万路军 , 张杰勇 . 区间不确定性下的空中作战行动过程优选方法[J]. 航空学报, 2021 , 42(2) : 324282 -324282 . DOI: 10.7527/S1000-6893.2020.24282

Abstract

This paper proposes an optimized selection method for the design of air combat Course of Action (COA) based on Dynamic Influence Nets (DINs) and interval multi-objective optimization according to the theory of DINs and the improved Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ). We first analyzed the basic concepts of air combat COA, established the static and dynamic models separately, and performed a detailed analysis of parameter uncertainty. Then, based on the improved Kendall concordance test method, we determined the key parameters after the consistency test, and designed the DINs probability propagation algorithm. Subsequently, the correlation between the realization probability of desired effects and each key parameter was analyzed, and the improved NSGA-Ⅱ algorithm was used to solve the model after the analysis of the effect evaluation index of COA optimization. Finally, through multiple sets of simulation cases, the rationality of the model and the effectiveness and superiority of the algorithm were verified.

参考文献

[1] SU M C, LAI S C. A new approach to multi-aircraft air combat assignments[J]. Swarm and Evolutionary Computation, 2012(6):39-46.
[2] RAPHAELS C. Air Force strategic planning:Past, present, and future[R]. Santa Monica:RAND Corporation, 2017.
[3] HAIDER S, LEVIS A H. Effective course-of-action determination to achieve desired effects[J]. IEEE Trans-actions on Systems, Man, and Cybernetics, Part A:Systems and Humans, 2007, 37(6):1140-1150.
[4] WAN L J, ZHONG Y, LI W. COA optimized selection method of aviation swarm based on DINs and DABC[J]. IEEE Access, 2020, 8:65116-65126.
[5] ZAIDI A K, PAPANTONI T P. Theory of influence networks[J]. Journal of Intelligent & Robotic Systems, 2010, 60(3/4):457-491.
[6] 朱延广. 基于随机事件影响网络的联合火力打击方案优化问题研究[D]. 长沙:国防科技大学, 2011:8-12. ZHU Y G. Study on joint fire strike plan optimization problem based on stochastic timed influence net[D]. Changsha:National University of Defense Technology, 2011:8-12(in Chinese).
[7] 杜正军, 陈超, 姜鑫. 基于影响网络与不完全信息多阶段博弈的作战行动序列模型及求解方法[J]. 国防科技大学学报, 2012, 34(3):63-67, 84. DU Z J, CHEN C, JIANG X. Modeling and solution method of course of action based on influence net and multi-stage games with incomplete information[J]. Journal of National University of Defense Technology, 2012, 34(3):63-67, 84(in Chinese).
[8] 张杰勇, 姚佩阳, 阳东升, 等. 基于DINs和PSO的组织行动过程选择方法[J]. 系统工程理论与实践, 2011, 31(10):1985-1993. ZHANG J Y, YAO P Y, YANG D S, et al. Approach to organizational course of actions selection based on DINs and PSO[J]. Systems Engineering-Theory & Practice, 2011, 31(10):1985-1993(in Chinese).
[9] 姚佩阳, 万路军, 马方方, 等. 基于动态影响网的任务联盟演化过程行动策略优选[J]. 系统工程与电子技术, 2014, 36(8):1527-1536. YAO P Y, WAN L J, MA F F, et al. Optimized action policy selection in task coalition evolution based on dynamic influence nets[J]. Systems Engineering and Electronics, 2014, 36(8):1527-1536(in Chinese).
[10] GHOSH D, BHUIYA S K, PATRA L K. A saddle point characterization of efficient solutions for interval optimization problems[J]. Journal of Applied Mathematics and Computing, 2018, 58(2), 193-217.
[11] LIU B D. Uncertain theory:A branch of mathematics for modeling human uncertainty[M]. Berlin:Springer Verlag, 2010:19-23.
[12] 姜潮, 韩旭, 谢慧超. 区间不确定性优化设计理论与方法[M]. 北京:科学出版社, 2017:26-27. JIANG C, HAN X, XIE H C. Interval uncertain optimization desigh:Theory and methods[M]. Beijing:Science Press, 2017:26-27(in Chinese).
[13] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
[14] 刘继新, 江灏, 董欣放, 等. 基于空中交通密度的机场航班动态协同排序[J]. 航空学报, 2020, 41(7):323717. LIU J X, JIANG H, DONG X F, et al. Dynamic collaborative sequencing method for arrival flights based on air traffic density[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):323717(in Chinese).
[15] JIANG C, HAN X, LIU G P, et al. A nonlinear interval number programming method for uncertain optimization problems[J]. European Journal of Operational Research, 2008, 188(1):1-13.
[16] 包玉娥, 彭晓芹, 赵博. 基于期望值与宽度的区间数距离及其完备性[J]. 模糊系统与数学, 2013, 27(6):133-139. BAO Y E, PENG X Q, ZHAO B. The interval number distance and completeness based on the expectation and width[J]. Fuzzy Systems and Mathematics, 2013, 27(6):133-139(in Chinese).
[17] SEGHIR F, KHABABA A, SEMCHEDINE F, et al. An interval-based multi-objective artificial bee colony algorithm for solving the web service composition under uncertain QoS[J]. The Journal of Supercomputing, 2019, 75(9):5622-5666.
[18] 顾佼佼, 赵建军, 颜骥, 等. 基于MODPSO-GSA的协同空战武器目标分配[J]. 北京航空航天大学学报, 2015, 41(2):252-258. GU J J, ZHAO J J, YAN J, et al. Cooperative weapon-target assignment based on multi-objective discrete particle swarm optimization and gravational search algorithm in air combat[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2):252-258(in Chinese).
[19] 陈志旺, 陈林, 白锌, 等. 求解约束多目标区间优化的交互多属性决策NSGA-Ⅱ算法[J]. 控制与决策, 2015, 30(5):865-870. CHEN Z W, CHEN L, BAI X, et al. Interactive multi-attribute decision-making NSGA-Ⅱ for constrained multi-objective optimization with interval numbers[J]. Control and Decision, 2015, 30(5):865-870(in Chinese).
[20] HAN X, BUI H, BAI X, et al. Optimization-based decision support for a team-in-the-loop experiment:Asset package selection and planning[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2013, 43(2):237-251.
[21] 张迎新. 不确定环境下军事任务计划建模与优化方法研究[D]. 长沙:国防科技大学, 2014:21-27. ZHANG Y X. Research on modeling and optimization methods for military mission planning under uncertainty[D]. Changsha:National University of Defense Technology, 2011:21-27(in Chinese).
文章导航

/