机载系统与电子系统专栏

航空电子微距太赫兹互连DRR访问容量分析

  • 李峭 ,
  • 李佳 ,
  • 熊华钢 ,
  • 杨劲赫
展开
  • 北京航空航天大学 电子信息工程学院, 北京 100191

收稿日期: 2020-04-12

  修回日期: 2020-06-10

  网络出版日期: 2020-09-04

Accessing capacity of Deficit Round-Robin (DRR) in avionics very-short range THz interconnections

  • LI Qiao ,
  • LI Jia ,
  • XIONG Huagang ,
  • YANG Jinhe
Expand
  • School of Electronics and Information Engineering, Beihang University, Beijing 100191, China

Received date: 2020-04-12

  Revised date: 2020-06-10

  Online published: 2020-09-04

摘要

为了减轻机载电子系统线缆和连接器的重量,减小其体积并降低维护成本,在航空电子组件的电路板或芯片之间,可以采用太赫兹通信技术实现厘米量级的微距互连。采用开关键控(OOK)调制和非相干解调实现点到点太赫兹互连,给出了数据速率、数据包长度等参数的设计方法,进而构建包含用户节点和簇头节点的半双工多路访问分簇网络架构。在簇内用户节点到簇头节点的介质访问控制协议中采用赤字轮询(DRR)机制,并采用随机网络演算(SNC)方法得到概率保证意义下多路访问的有效服务容量,分析了阻塞干扰对DRR服务曲线的影响。分析和算例表明,DRR访问在保证实时性能界限的条件下兼顾了多路访问的灵活性,满足航空电子微小型化组件之间太赫兹通信和分簇组网的需求。

本文引用格式

李峭 , 李佳 , 熊华钢 , 杨劲赫 . 航空电子微距太赫兹互连DRR访问容量分析[J]. 航空学报, 2021 , 42(6) : 624082 -624082 . DOI: 10.7527/S1000-6893.2020.24082

Abstract

To reduce size, weight and maintenance costs of wires, cables and connectors in airborne electronic systems, Terahertz (THz) communication technologies can be adopted to realize very-short range interconnections in a magnitude of centimeter between circuit boards or off-chips within avionics components. Under the condition that THz node-to-node links can be implemented by the On-Off Keying (OOK) modulation and non-coherent demodulation, design methods for parameters such as data rate and packet length were proposed to help form clustered network architecture with half duplex multiple access between a head node and user nodes. Within a cluster, the DRR mechanism was adopted as the Media Access Control (MAC) scheme from user nodes to the head node. Based on the Stochastic Network Calculus (SNC), the probabilistic guaranteed effective capacity for multi-accessing nodes was deduced to analyze the effect of jamming interference from the physical layer on the DRR service curve. Analysis and computation results show that the DRR scheduling can achieve flexible multiplexing with real-time performance guaranteed, therefore meeting the application requirements in THz multi-accessing communications and clustered networking among small or micro avionics components.

参考文献

[1] 熊华钢, 周贵荣, 李峭. 机载总线网络及其发展[J]. 航空学报, 2006, 27(6):1135-1144. XIONG H G, ZHOU G R, LI Q. A survey on avionics bus and network interconnections and their progress[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6):1135-1144(in Chinese).
[2] 何锋. 机载网络技术基础[M]. 北京:国防工业出版社, 2018:382-443. HE F. Fundamentals of airborne network[M]. Beijing:National Defense Industry Press, 2018:382-443(in Chinese).
[3] The ASHLEY Steering Committee. ASHLEY-The project[EB/OL]. (2018-03-18)[2020-03-05].www.ashleyproject.eu,2018.3.18.
[4] FURSE C, HAUPT R. Down to the wire[aircraft wiring[J]. IEEE Spectrum, 2001, 38(2):34-39.
[5] SÁMANO-ROBLES R, TOVAR E, CINTRA J, et al. Wireless avionics intra-communications:Current trends and design issues[C]//2016 Eleventh International Conference on Digital Information Management (ICDIM). Piscataway, NJ:IEEE Press, 2016:266-273.
[6] TORRES O, NGUYEN T, MACHENZIE A. Enabling wireless avionics intra-communications:NASA/TM-2016-219364[R]. Washington, D.C.:NASA, 2016.
[7] International Telecommunication Union. Technical characteristics and spectrum requirements of wireless avionics intra-communications systems to support their safe operation:ITU-R M.2283-0[S]. Geneva:International Telecommunication Union, 2013.
[8] SAMBOU B, PEYRARD F, FRABOUL C. Scheduling avionics flows on an IEEE 802.11e HCCA and AFDX hybrid network[C]//2011 IEEE Symposium on Computers and Communications (ISCC). Piscataway:IEEE Press, 2011:205-212.
[9] CAVDAR C, GERA D, HOFMANN S, et al. Demonstration of an integrated 5G network in an aircraft cabin environment[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway:IEEE Press, 2018:1-10.
[10] 左沅君, 李峭, 熊华钢, 等. 航空电子MB-OFDM-UWB无线互连信道分析与仿真[J]. 航空学报, 2019, 40(7):322739. ZUO Y J, LI Q, XIONG H G, et al. Analysis and simulation of avionics MB-OFDM-UWB wireless interconnection channel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):322739(in Chinese).
[11] GAO J M, LIU Y, WANG K. EMI analysis and improvement of fuel quantity indication system on board[C]//2013 5th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. Piscataway:IEEE Press, 2013:612-614.
[12] 马振洋, 左晶, 史春蕾, 等. 机载电子设备屏蔽效能测试与优化[J]. 航空学报, 2020, 41(7):323538. MA Z Y, ZUO J, SHI C L, et al. Test and optimization of shield effectiveness for airborne electronic equipment[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):323538(in Chinese).
[13] GU Q J. THz interconnect:the last centimeter communication[J]. IEEE Communications Magazine, 2015, 53(4):206-215.
[14] LEE Y S. Terahertz optics[M]//Principles of Terahertz Science and Technology. Boston, MA:Springer US,2008:1-56.
[15] AKYILDIZ I F, JORNET J M, HAN C. Terahertz band:next frontier for wireless communications[J]. Physical Communication, 2014, 12:16-32.
[16] ELAYAN H, AMIN O, SHIHADA B, et al. Terahertz band:the last piece of RF spectrum puzzle for communication systems[J]. IEEE Open Journal of the Communications Society, 2019, 1:1-32.
[17] GU Q J, XU Z W, JIAN H Y, et al. CMOS THz generator with frequency selective negative resistance tank[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(2):193-202.
[18] JORNET J M, AKYILDIZ I F. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the Terahertz band[J]. IEEE Transactions on Wireless Communications, 2011, 10(10):3211-3221.
[19] ABADAL S, HAN C, JORNET J M. Wave propagation and channel modeling in chip-scale wireless communications:A survey from millimeter-wave to Terahertz and optics[J]. IEEE Access, 2019, 8:278-293.
[20] MOSHIRFATEMI F. Communicating at terahertz frequencies[D]. Portland:Portland State University, 2017.
[21] 刘硕. 基于数字表征的编码超表面及其应用[D]. 南京:东南大学, 2017. LIU S. Digitalized coding metasurface and its applications[D]. Nanjing:Southeast University, 2017(in Chinese).
[22] HEADLAND D, MONNAI Y, ABBOTT D, et al. Tutorial:Terahertz beamforming, from concepts to realizations[J]. APL Photonics, 2018, 3(5):051101.
[23] CHEN Z, MA X Y, ZHANG B, et al. A survey on terahertz communications[J]. China Communications, 2019, 16(2):1-35.
[24] JORNET J M, AKYILDIZ I F. Information capacity of pulse-based wireless nanosensor networks[C]//2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. Piscataway:IEEE Press, 2011:80-88.
[25] 刘文朋. 太赫兹无线个域网MAC协议研究[D]. 重庆:重庆邮电大学, 2015. LIU W P. A study on MAC protocols of terahertz wireless personal area networks[D]. Chongqing:Chongqing University of Posts and Telecommunications, 2015(in Chinese).
[26] GHAFOOR S, BOURJNAH N et. al. MAC protocols for Terahertz communication:A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4):2236-2282.
[27] MOHREHKESH S, WEIGLE M C. RIH-MAC:Receiver-initiated harvesting-aware MAC for nano works[C]//Proceedings of ACM the 1 st Annual International Conference on Nanoscale Computing and Communication. New York:ACM, 2014:1-6.
[28] KOPETZ H. Real-time systems:Design principles for distributed embedded applications[M]. 2nd ed. New York:ACM, 2014:10-12,152-159,167-177.
[29] SHREEDHAR M, VARGHESE G. Efficient fair queuing using deficit round-robin[J]. ACM Transactions on Networking, 1996, 4(3):375-385.
[30] ZAREPOUR E, HASSAN M, CHOU C T, et al. Performance analysis of carrier-less modulation schemes for wireless nano sensor networks[C]//2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). Piscataway:IEEE Press, 2015:45-50.
[31] GUPTA A. Joint symbol detection and synchronization design for ultra-high-speed wireless data networks in the Terahertz band[D]. New York:State University of New York at Buffalo, 2015.
[32] 仇佩亮, 陈惠芳, 谢磊. 数字通信基础[M]. 北京:电子工业出版社, 2007:242-245. QIU P L, CHEN H F, XIE L. Fundamentals of digital communications[M]. Beijing:Publishing House of Electronics Industry, 2007:242-245(in Chinese).
[33] XIA Q, HOSSAIN Z, MEDLEY M, et al. A link-layer synchronization and medium access control protocol for terahertz-band communication networks[J]. IEEE Transactions on Mobile Computing, 2021, 20(1):2-18.
[34] LE BOUDEC J-Y, THIRAN P. Network calculus-A theory of deterministic queuing systems for the Internet (Version 2019-10-1)[M]. Heidelberg, Germany:Springer-Verlog, 2019.
[35] CRUZ R L. A calculus for network delay. I. Network elements in isolation[J]. IEEE Transactions on Information Theory, 1991, 37(1):114-131.
[36] BOYER M, STEA G, SOFACK W M. Deficit Round Robin with network calculus[C]//6th International ICST Conference on Performance Evaluation Methodologies and Tools. Piscataway:IEEE Press, 2012:138-147.
[37] LEWIS J T, RUSSELL R. An introduction to large deviations for telegraphic engineers[J]. Dublin Institute for Advanced Studies, 1997:1-45.
[38] WU D P, NEGI R. Effective capacity:A wireless link model for support of quality of service[J]. IEEE Transactions on Wireless Communications, 2003, 2(4):630-643.
[39] FIDLER M, RIZK A. A guide to the stochastic network calculus[J]. IEEE Communications Surveys & Tutorials, 2015, 17(1):92-105.
[40] FIDLER M. WLC15-2:A network calculus approach to probabilistic quality of service analysis of fading channels[C]//IEEE Globecom 2006.Piscataway:IEEE Press, 2006:1-6.
[41] GILBERT E N. Capacity of a burst-noise channel[J]. Bell System Technical Journal, 1960, 39(5):1253-1265.
[42] WANDELER E. Modular performance analysis and interface-based design for embedded real-time systems[D]. Zurich:Swiss Federal Institute of Technology, 2006.
文章导航

/