电子电气工程与控制

多局部节点异步抗差航迹关联算法

  • 衣晓 ,
  • 杜金鹏 ,
  • 张天舒
展开
  • 海军航空大学, 烟台 264001

收稿日期: 2020-07-06

  修回日期: 2020-07-29

  网络出版日期: 2020-09-02

基金资助

国防科技卓越青年人才基金(2017-JCJQ-ZQ-003);泰山学者工程专项经费(ts201712072)

Asynchronous anti-bias track-to-track association algorithm of multi-local nodes

  • YI Xiao ,
  • DU Jinpeng ,
  • ZHANG Tianshu
Expand
  • Naval Aviation University, Yantai 264001, China

Received date: 2020-07-06

  Revised date: 2020-07-29

  Online published: 2020-09-02

Supported by

Excellent Youth Scholar of the National Defense Science and Technology Foundation of China (2017-JCJQ-ZQ-003);The Special Fund for the Taishan Scholar Project (ts201712072)

摘要

为解决航迹异步与系统误差并存情况下的多局部节点航迹关联问题,提出一种基于区间序列离散度的多局部节点异步抗差航迹关联算法。定义区间型数据集的离散信息度量,给出系统误差下航迹序列区间化方法,通过累次积分计算离散度,结合多维分配进行关联判定。针对多局部节点上报目标不完全一致现象,设置零号航迹管理关联质量。与传统算法相比,无需时域配准,可在系统误差下对异步航迹直接关联。仿真结果表明,算法能在局部节点上报目标不完全一致场景下实现有效关联,且正确关联率随局部节点数目的增加或目标密集程度的增大而提高。

本文引用格式

衣晓 , 杜金鹏 , 张天舒 . 多局部节点异步抗差航迹关联算法[J]. 航空学报, 2021 , 42(6) : 324494 -324494 . DOI: 10.7527/S1000-6893.2020.24494

Abstract

To solve the problem of asynchronous anti-bias track association, an asynchronous anti-bias track-to-track association algorithm of multi-local nodes based on the discrete degree of interval sequence is proposed. A discrete information measurement of the interval data set is defined and the interval method for track sequence with system biases is provided. The discrete degree is calculated through repeated integral, and the association determination is performed using multi-dimension assignment. Aiming at the phenomenon of different targets reported by multi-local nodes, the zero track is established to manage the association quality. Compared with the traditional algorithm, the asynchronous track can be directly correlated without time-domain registration in the presence of system errors. The simulation results show that this algorithm can achieve effective association in the presence of different targets reported by multi-local nodes and the correct association rate increases with the increase of the local nodes number or the target density.

参考文献

[1] 何友, 王国宏, 关欣. 信息融合理论及应用[M]. 北京:电子工业出版社, 2010:178-265. HE Y, WANG G H, GUAN X. Information fusion theory with applications[M]. Beijing:Publishing House of Electronics Industry, 2010:178-265(in Chinese).
[2] ZHU H, WANG M L, YUEN K V, et al. Track-to-track association by coherent point drift[J]. IEEE Signal Processing Letters, 2017, 24(5):643-647.
[3] ZHU H, LEUNG H, YUEN K V. A joint data association, registration, and fusion approach for distributed tracking[J]. Information Sciences, 2015, 324:186-196.
[4] ZHU H Y, WANG C. Joint track-to-track association and sensor registration at the track level[J]. Digital Signal Processing, 2015, 41:48-59.
[5] 郭蕴华, 袁成. 一种异步航迹关联的变异蚁群算法[J]. 电子学报, 2012, 40(11):2200-2205. GUO Y H, YUAN C. A mutation ant colony algorithm for the asynchronous track correlation[J]. Acta Electronica Sinica, 2012, 40(11):2200-2205(in Chinese).
[6] KAPLAN L M, BAR-SHALOM Y, BLAIR W D. Assignment costs for multiple sensor track-to-track association[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(2):655-677.
[7] 刘伟峰, 文成林. 基于OSPA距离的航迹关联方法[J]. 航空学报, 2012, 33(6):1083-1092. LIU W F, WEN C L. A track association algorithm based on the OSPA distance[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6):1083-1092(in Chinese).
[8] ZHU H Y, HAN C Z, HAN H, et al. The algorithm and simulations for the asynchronous track association[C]//Sixth International Conference of Information Fusion. Piscataway:IEEE Press, 2003.
[9] OKELLO N, RISTIC B. Maximum likelihood registration for multiple dissimilar sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3):1074-1083.
[10] LIN X D, BAR-SHALOM Y, KIRUBARAJAN T. Exact multisensor dynamic bias estimation with local tracks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2):576-590.
[11] 余安喜, 胡卫东, 郁文贤, 等. 航迹相关与融合的性能评估[J]. 系统工程与电子技术, 2003,25(7):897-900. YU A X, HU W D, YU W X, et al. Performance evaluation for track correlation and fusion[J]. Systems Engineering and Electronics, 2003,25(7):897-900(in Chinese).
[12] 衣晓, 张怀巍, 曹昕莹, 等. 基于区间灰数的分布式多目标航迹关联算法[J]. 航空学报, 2013, 34(2):352-360. YI X, ZHANG H W, CAO X Y, et al. A track association algorithm for distributed multi-target systems based on gray interval numbers[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):352-360(in Chinese).
[13] QI L, DONG K, LIU Y, et al. Anti-bias track-to-track association algorithm based on distance detection[J]. IET Radar, Sonar & Navigation, 2017, 11(2):269-276.
[14] 齐林, 熊伟, 何友. 基于距离分级聚类的机载雷达航迹抗差关联算法[J]. 电子学报, 2018, 46(6):1475-1481. QI L, XIONG W, HE Y. Anti-bias track-to-track association algorithm for aircraft platforms based on distance hierarchical clustering[J]. Acta Electronica Sinica, 2018, 46(6):1475-1481(in Chinese).
[15] 何友, 宋强, 熊伟. 基于傅里叶变换的航迹对准关联算法[J]. 航空学报, 2010, 31(2):356-362. HE Y, SONG Q, XIONG W. A track registration-correlation algorithm based on Fourier transform[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):356-362(in Chinese).
[16] 何友, 宋强, 熊伟. 基于相位相关的航迹对准关联技术[J]. 电子学报, 2010, 38(12):2718-2723. HE Y, SONG Q, XIONG W. Track alignment-correlation technique based on phase correlation[J]. Acta Electronica Sinica, 2010, 38(12):2718-2723(in Chinese).
[17] 董凯, 王海鹏, 刘瑜. 基于拓扑统计距离的航迹抗差关联算法[J]. 电子与信息学报, 2015, 37(1):50-55. DONG K, WANG H P, LIU Y. Anti-bias track association algorithm based on topology statistical distance[J]. Journal of Electronics & Information Technology, 2015, 37(1):50-55(in Chinese).
[18] 吴泽民, 任姝婕, 刘熹. 基于拓扑序列法的航迹关联算法[J]. 航空学报, 2009, 30(10):1937-1942. WU Z M, REN S J, LIU X M. Topology sequence based track correlation algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1937-1942(in Chinese).
[19] TIAN W, WANG Y, SHAN X M, et al. Track-to-track association for biased data based on the reference topology feature[J]. IEEE Signal Processing Letters, 2014, 21(4):449-453.
[20] ZHU H Y, WANG W, WANG C. Robust track-to-track association in the presence of sensor biases and missed detections[J]. Information Fusion, 2016, 27:33-40.
[21] 熊伟, 张晶炜, 何友. 基于多维分配和灰色理论的航迹关联算法[J]. 电子与信息学报, 2010, 32(4):898-901. XIONG W, ZHANG J W, HE Y. Track correlation algorithm based on multi-dimension assignment and gray theory[J]. Journal of Electronics & Information Technology, 2010, 32(4):898-901(in Chinese).
[22] 衣晓, 何友, 关欣. 多目标跟踪的动态多维分配算法[J]. 电子学报, 2005, 33(6):1120-1123. YI X, HE Y, GUAN X. Dynamic multidimensional assignment algorithm for multitarget tracking[J]. Acta Electronica Sinica, 2005, 33(6):1120-1123(in Chinese).
[23] ZHAO G Z, CHEN A G,LU G X, et al. Data fusion algorithm based on fuzzy sets and D-S theory of evidence[J]. Tsinghua Science and Technology, 2020(1):12-19.
[24] HU C Z, TAN H M. Multisensor fuzzy stochastic fusion based on genetic algorithms[J]. Journal of Beijing Institute of Technology, 2000:589-594.
[25] ZHU L L, ZHAN H C, JING Y Z. FGAs-based data association algorithm for multi-sensor multi-target tracking[J]. Chinese Journal of Aeronautics, 2003, 16(3):177-181.
[26] RVAideMemoire. Coefficient of variation[J].Encyclopedia of Statistical Sciences, 2008, 94(1):94.
[27] 衣晓, 杜金鹏. 基于分段序列离散度的异步航迹关联算法[J]. 航空学报, 2020, 41(7):323694. YI X, DU J P. Asynchronous track-to-track association algorithm based on discrete degree of segmented sequence[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):323694(in Chinese).
文章导航

/