空天往返飞行器制导控制技术专栏

基于时标分解的弹性高超声速飞行器智能控制

  • 许斌 ,
  • 王霞
展开
  • 西北工业大学 自动化学院, 西安 710072

收稿日期: 2020-06-08

  修回日期: 2020-07-09

  网络出版日期: 2020-09-02

基金资助

国家自然科学基金(61933010);陕西省自然科学基金(2019JZ-08);航空科学基金(20180753007,201905053005):霍英东教育基金(161058)

Time-scale decomposition based intelligent control of flexible hypersonic flight vehicle

  • XU Bin ,
  • WANG Xia
Expand
  • School of Automation, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-06-08

  Revised date: 2020-07-09

  Online published: 2020-09-02

Supported by

National Natural Science Foundation of China (61933010); Natural Science Foundation of Shaanxi Province (2019 JZ-08); Aeronautical Science Foundation of China (20180753007, 201905053005); Fok Ying-Tong Education Foundation (161058)

摘要

考虑弹性高超声速飞行器纵向动力学模型,提出了一种基于时标分解的智能控制方法。考虑刚体状态和弹性模态具有不同的时标特性,采用奇异摄动理论进行快慢时标分解,将模型转换为刚体慢变子系统和弹性快变子系统。针对刚体子系统考虑动力学不确定,基于平行估计模型构造表征不确定逼近效果的预测误差,结合跟踪误差给出复合学习控制策略。针对弹性子系统设计自适应滑模控制稳定弹性模态。通过李雅普诺夫稳定性分析可证系统状态一致终值有界。仿真表明所提出的控制方法能够实现刚弹模态的稳定收敛,且具有更高的跟踪精度、更好的学习性能和更快的收敛速度。

本文引用格式

许斌 , 王霞 . 基于时标分解的弹性高超声速飞行器智能控制[J]. 航空学报, 2020 , 41(11) : 624387 -624387 . DOI: 10.7527/S1000-6893.2020.24387

Abstract

Considering the longitudinal dynamics of a flexible hypersonic flight vehicle, the time-scale decomposition based intelligent control is proposed. Considering the different time-scale characteristics between the rigid states and the flexible states, the singular perturbation theory is used to conduct the time-scale decomposition such that the vehicle model is transformed to the rigid slow dynamics and the flexible fast perturbation. For the rigid subsystem with dynamics uncertainty, based on the serial-parallel estimation model that can reflect the estimation performance, the prediction error is constructed and the composite learning control is designed. For the flexible subsystem, the adaptive sliding mode control is designed to stabilize the flexible states. The uniformly ultimately bounded stability of the system is proved via the Lyapunov stability analysis. The simulation test shows that the proposed method can guarantee the stable convergence of the whole system and achieve the higher tracking accuracy, the better learning performance and the faster convergence.

参考文献

[1] LI H F, LIN P, XU D J. Control-oriented modeling for air-breathing hypersonic vehicle using parameterized configuration approach[J]. Chinese Journal of Aeronautics, 2011,24(1):83-91.
[2] 丛戎飞, 叶友达, 赵忠良. 吸气式高超声速飞行器俯仰/滚转耦合运动特性[J]. 航空学报, 2020, 41(4):123588. CONG R F, YE Y D, ZHAO Z L, et al. Characteristic of air-breathing hypersonic vehicle in force-pitch and free-roll coupling motion[J]. Acta Areonautica et Astronautica Sinica, 2020, 41(4):123588(in Chinese).
[3] XU H J, MIRMIRANI M D, IOANNOU P A. Adaptive sliding mode control design for a hypersonic flight vehicle[J]. Journal of Guidance Control and Dynamics, 2004, 27(5):829-838.
[4] FIORENTINI L, SERRANI A, BOLENDER M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J]. Journal of Guidance Control and Dynamics, 2009, 32(2):402-417.
[5] XU B, SUN F S, YANG C G, et al. Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping[J]. International Journal of Control, 2011, 84(9):1543-1552.
[6] 高道祥, 孙增圻, 罗熊, 等. 基于Backstepping的高超声速飞行器模糊自适应控制[J]. 控制理论与应用, 2008(5):805-810. GAO D X, SUN Z X, LUO X, et al. Fuzzy adaptive control for hypersonic vehicle via backstepping method[J]. Control Theory and Applications, 2008(5):805-810(in Chinese).
[7] XU B, WANG D, ZHANG Y, et al. DOB-Based neural control of flexible hypersonic flight vehicle considering wind effects[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11):8676-8685.
[8] XU B, YANG D P, SHI Z K, et al. Online recorded data-based composite neural control of strict-feedback systems with application to hypersonic flight dynamics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8):3839-3849.
[9] XU B, HUANG X Y, WANG D W, et al. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation[J]. Asian Journal of Control, 2014, 16(1):162-174.
[10] 骆长鑫, 张东洋, 雷虎民, 等. 输入受限的高超声速飞行器鲁棒反演控制[J]. 航空学报, 2018, 39(4):321801. LUO C X, ZHANG D Y, LEI H M, et al. Robust backstepping control of input-constrained hypersonic vehicle[J]. Acta Areonautica et Astronautica Sinica, 2018, 39(4):321801(in Chinese).
[11] ZONG Q, WANG F, TIAN B L, et al. Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty[J]. Nonlinear Dynamics, 2014, 78(1):289-315.
[12] XU B. Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity[J]. Nonlinear Dynamics, 2015, 80(3):1509-1520.
[13] CHEN F, WANG Z, TAO G, et al. Robust adaptive fault-tolerant control for hypersonic flight vehicles with multiple faults[J]. Journal of Aerospace Engineering, 2015, 28(4):04014111.
[14] QI R Y, HUANG Y H, JIANG B, et al. Adaptive backstepping control for a hypersonic vehicle with uncertain parameters and actuator faults[J]. Proceedings of the Institution of Mechanical Engineers Part I:Journal of Systems and Control Engineering, 2013, 227(1):51-61.
[15] GUO Y Y, XU B, HU X X, et al. Two controller designs of hypersonic flight vehicle under actuator dynamics and AOA constraint[J]. Aerospace Science and Technology, 2018, 80:11-19.
[16] XU B, SHI Z K, SUN F C, et al. Barrier Lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator faults[J]. IEEE Transactions on Cybernetics, 2019, 49(3):1047-1057.
[17] AN H, XIA H W, WANG C H. Barrier Lyapunov function-based adaptive control for hypersonic flight vehicles[J]. Nonlinear Dynamics, 2017, 88(3):1833-1853.
[18] FIORENTINI L, SERRANI A. Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model[J]. Automatica, 2012, 48(7):1248-1261.
[19] XU B, WANG X, SHI Z K. Robust adaptive neural control of nonminimum phase hypersonic vehicle model[J]. IEEE Transactions on Systems Man and Cybernetics:Systems, 2019, doi:10.1109/TSMC.2019:2894916.
[20] 吴志刚, 楚龙飞, 杨超, 等. 推力耦合的高超声速飞行器气动伺服弹性研究[J]. 航空学报, 2012, 33(8):1355-1363. WU Z G, CHU L F, YANG C, et al. Study on aeroservoelasticity of hypersonic vehicles with thrust coupling[J]. Acta Areonautica et Astronautica Sinica, 2012, 33(8):1355-1363(in Chinese).
[21] HU X X, WU L G, HU C H, et al. Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle[J]. Journal of the Franklin Institute, 2012, 349(2):559-577.
[22] ZHANG Y, XIAN B. Continuous nonlinear asymptotic tracking control of an air-breathing hypersonic vehicle with flexible structural dynamics and external disturbances[J]. Nonlinear Dynamics, 2016, 83(1):867-891.
[23] BU X W, WU X Y, ZHANG R, et al. Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle[J]. Journal of the Franklin Institute, 2015, 352(4):1739-1765.
[24] 朴敏楠, 陈志刚, 孙明玮, 等. 高超声速飞行器气动伺服弹性的自适应抑制[J]. 航空学报, 2020,41(11):623698. PIAO M N, CHEN Z G, SUN M W, et al. Adaptive aeroservoelasticity suppression of hypersonic vehicle[J]. Acta Areonautica et Astronautica Sinica, 2020,41(11):623698(in Chinese).
[25] SIGTHORSSON D O, JANKOVSKY P, SERRANI A, et al. Robust linear output feedback control of an airbreathing hypersonic vehicle[J]. Journal of Guidance Control and Dynamics, 2018, 31(4):1066-2008(in Chinese).
[26] SICILIANO B, BOOK W J. A singular perturbation approach to control of lightweight flexible manipulators[J]. The International Journal of Robotics Research, 1988, 7(4):79-90.
[27] ZHANG Y, YANG T W, SUN Z Q. Neuro-sliding-mode control of flexible-link manipulators based on singularly perturbed model[J]. Tsinghua Science and Technology, 2009, 14(4):444-451.
[28] CHEN M, TAO G, JIANG B. Dynamic surface control using neural networks for a class of uncertain nonlinear systems with input saturation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9):2086-2097.
文章导航

/