固体力学与飞行器总体设计

基于深度神经网络的客机总体设计参数敏感性分析

  • 范周伟 ,
  • 余雄庆 ,
  • 王朝 ,
  • 钟伯文
展开
  • 1. 南京航空航天大学 航空学院 飞行器先进设计技术国防重点学科实验室, 南京 210016;
    2. 中国商飞北京民用飞机技术研究中心, 北京 102211

收稿日期: 2020-06-01

  修回日期: 2020-08-18

  网络出版日期: 2020-09-02

基金资助

中国商飞北京民用飞机技术研究中心民用飞机设计数字仿真技术北京市重点实验室开放课题

Sensitivity analysis of key design parameters of commercial aircraft using deep neural network

  • FAN Zhouwei ,
  • YU Xiongqing ,
  • WANG Chao ,
  • ZHONG Bowen
Expand
  • 1. Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Beijing Aeronautical Science & Technology Research Institute, COMAC, Beijing 102211, China

Received date: 2020-06-01

  Revised date: 2020-08-18

  Online published: 2020-09-02

Supported by

Funded by Beijing Key Laboratory of Civil Aircraft Design and Simulation Technology, Beijing Aeronautical Science & Technology Research Institute, Commercial Aircraft Corporation of China

摘要

飞机总体主要设计参数敏感性分析揭示了总体主要设计参数对飞机特性指标的影响,有助于总体设计方案的决策。针对宽体客机总体主要设计参数敏感性问题,根据其总体主要设计参数和特性指标的特点,以及多学科间的耦合关系,建立了深度神经网络模型。该深度神经网络模型以客机总体主要设计参数为输入,对特性指标进行预测。在深度神经网络模型中,设置了多个输入层、多个输出层以及多个分块的隐藏层,从而模拟客机总体主要设计参数对特性指标的影响以及不同特性指标之间的相互作用。测试结果表明,与传统代理模型相比,深度神经网络模型对客机特性指标的预测精度更高,多参数适应性更好。利用该深度神经网络模型对客机总体主要设计参数进行敏感性分析。分析结果表明,机翼1/4弦线后掠角在30°~31.5°时,有利于减少最大起飞重量和起飞平衡场长;发动机海平面最大静推力和机翼面积对客机直接使用成本、最大起飞重量等特性指标的影响最为显著。

本文引用格式

范周伟 , 余雄庆 , 王朝 , 钟伯文 . 基于深度神经网络的客机总体设计参数敏感性分析[J]. 航空学报, 2021 , 42(4) : 524353 -524353 . DOI: 10.7527/S1000-6893.2020.24353

Abstract

The sensitivity analysis of key design parameters of aircraft reveals the relationship between the key design parameters and aircraft characteristics, facilitating the decision making in aircraft preliminary design. Aiming at the key design parameter sensitivity of wide-body commercial aircraft, we establish a deep neural network model based on the features of key design parameters and aircraft characteristics and the coupling relationship among multiple disciplines, taking the key design parameters as input to predict the aircraft characteristics. In this model, multiple input layers, multiple output layers, and multiple blocks of hidden layers are set to simulate the effects of key design parameters on aircraft characteristics and the interactions among different aircraft characteristics. Comparisons with traditional surrogate models reveal that the deep neural network model has higher prediction accuracy and better adaptability to the aircraft characteristics. The proposed model is then used to analyze the sensitivity of the commercial aircraft primary parameters. The analysis results show that a lower maximum takeoff weight and a shorter takeoff balanced field length can be achieved when the wing sweep at 1/4 chord is between 30° to 31.5°. The maximum static thrust of engines at sea level and the wing area have the most significant influence on the direct operation cost, maximum takeoff weight, and other characteristics.

参考文献

[1] 张帅, 余雄庆. 中短程客机总体参数敏感性分析[J]. 航空学报, 2013, 34(4):809-816. ZHANG S, YU X Q. Sensitivity analysis of primary parameters in preliminary design of a short/medium-haul airliner[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):809-816(in Chinese).
[2] QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1):1-28.
[3] FORRESTER A, SOBESTER A, KEANE A. Engineering design via surrogate modelling:a practical guide[M]. Chichester:John Wiley & Sons, 2008:33-59.
[4] 张陈力子, 宋晓玉, 祝雯生, 等. 利用代理模型的客机总体参数敏感性分析[J]. 空军工程大学学报:自然科学版, 2016, 17(3):18-22. ZHANG C L Z, SONG X Y, ZHU W S, et al. Analysis of parameters sensitivity for airliner conceptual design using surrogate-model[J]. Journal of Air Force Engineering University:Natural Science Edition, 2016, 17(3):18-22(in Chinese).
[5] 张伟, 高正红, 周琳, 等. 基于代理模型全局优化的自适应参数化方法研究[J]. 航空学报, 2020, 41(10):123815. ZHANG W, GAO Z H, ZHOU L, et al. Efficient surrogate-based aerodynamic shape optimization with adaptive design space expansion[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):123815(in Chinese).
[6] BOUHLEL M A, BARTOLI N, OTSMANE A, et al. An improved approach for estimating the hyperparameters of the Kriging model for high-dimensional problems through the partial least squares method[J]. Mathematical Problems in Engineering, 2016, 2016:1-11.
[7] 武亮, 左向梅, 邱勇. 基于SVR多学科设计优化代理模型技术研究[J]. 飞行力学, 2020, 38(2):23-28. WU L, ZUO X M, QIU Y. Study of surrogate model technology in multidisciplinary design optimization based on SVR[J]. Flight Dynamics, 2020, 38(2):23-28(in Chinese).
[8] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge:The MIT Press, 2016:3-10.
[9] LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166.
[10] DENG L, WANG Y, LIU Y, et al. A CNN-based vortex identification method[J]. Journal of Visualization, 2019, 22(1):65-78.
[11] 陈海, 钱炜祺, 何磊. 基于深度学习的翼型气动系数预测[J]. 空气动力学学报, 2018, 36(2):294-299. CHEN H, QIAN W Q, HE L. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamic Sinica, 2018, 36(2):294-299(in Chinese).
[12] 周旺旺, 姚佩阳, 张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018, 39(11):322468. ZHOU W W, YAO P Y, ZHANG J Y, et al. Combat intention recognition for aerial targets based on deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):322468(in Chinese).
[13] 王宇, 余雄庆. 考虑不确定性的飞机总体参数优化方法[J]. 航空学报, 2009, 30(10):1883-1888. WANG Y, YU X Q. Optimization method for aircraft conceptual design under uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1883-1888(in Chinese).
[14] CHAI X, YU X, WANG Y. Multipoint optimization on fuel efficiency in conceptual design of wide-body air-craft[J]. Chinese Journal of Aeronautics, 2018, 31(1):99-106.
[15] GOOGLE. TensorFlow:An end-to-end open source machine learning platform[EB/OL]. (2019-8-1)[2019-8-10]. https://www.tensorflow.org.
[16] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on International Conference on Machine (ICML-10),2010:807-814.
[17] NEWEY W K. Adaptive estimation of regression models via moment restrictions[J]. Journal of Econometrics, 1988, 38(3):301-339.
[18] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[DB/OL]. arXiv preprint:1502.03167, 2015.
[19] MICROSOFT. Neural Network Intelligence[EB/OL]. (2019-08-05)[2019-09-01]. https://github.com/microsoft/nni.
[20] BERGSTRA J, BARDENET R, BENGIO Y, et al. Algorithms for hyper-parameter optimization[C]//Advances in Neural Information Processing Systems, 2011:2546-2554.
[21] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[DB/OL]. arXiv preprint:1207.0580, 2012.
[22] BOUHLEL M A, HWANG J T, BARTOLI N, et al. A Python surrogate modeling framework with derivatives[J]. Advances in Engineering Software, 2019, 135:102662.
[23] 闻新, 李新, 张兴旺, 等. 应用MATLAB实现神经网络[M]. 北京:国防工业出版社, 2015:96-137. WEN X, LI X, ZHANG X W, et al. Application of MATLAB neural network[M]. Beijing:National Defense Industry Press, 2015:96-137(in Chinese).
[24] 杨哲, 李曙林, 周莉, 等. 飞机作战生存力设计参数灵敏度分析[J]. 北京航空航天大学学报, 2013, 39(8):1096-1101. YANG Z, LI S L, ZHOU L, et al. Design parameters sensitivity analysis of aircraft survivability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(8):1096-1101(in Chinese).
[25] WILKINSON L. Revising the Pareto chart[J]. The American Statistician, 2006, 60(4):332-334.
文章导航

/