Blades are the core part of aero-engines, with a manufacturing amount accounting for more than 30% of the total manufacturing. The blade edge with large curved and twisted surfaces, thin walls and small gradual changing in radius, demands rigorous precision. The precision and quality of grinding in the end process directly determine the performance and life span of the aero-engines. Despite the dominant role of manual work in blade edge grinding, its disadvantages of health hazard, strong dependence on experience and poor consistency of parts make automatic grinding an inevitable trend. Automatic grinding and polishing of the blade edge usually adopts the cutting path planning method for horizontal or vertical grinding of contact wheels, which is discontinuous and easily leads to local over-cutting. The spiral feed grinding process with force control is therefore established in this paper using the belt enveloping blade edge, and the path planning grinding method based on the shape of tool surfaces and complex curved surfaces with high order touching is proposed to realize the efficient grinding of the blade edge. The blade edge area is first planned for the horizontal grinding path, followed by planning of the high order touching envelope segment according to the principle of arc fitting curve. The horizontal and vertical coupling path is finally planned to realize the spiral continuous feed. Simulation and experimental results reveal that compared with the traditional horizontal or vertical grinding method, the proposed method reduces the tool point by 78.8%, improves the contouring accuracy from -0.06-+0.07 mm to -0.015-+0.05 mm and the surface roughness from Ra>3.2 μm to 0.175 μm, and effectively avoids overcutting.
[1] 刘维伟. 航空发动机叶片关键制造技术研究进展[J]. 航空制造技术, 2016, 59(21):50-56. LIU W W. Research progress on key manufacturing technology of aeroengine blades[J]. Aeronautical Manufacturing Technology, 2016, 59(21):50-56(in Chinese).
[2] XIAO G J, HUANG Y. Constant-load adaptive belt polishing of the weak-rigidity blisk blade[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78(9-12):1473-1484.
[3] 段继豪, 史耀耀, 李小彪, 等. 整体叶盘柔性磨头自适应抛光实现方法[J]. 航空学报, 2011, 32(5):934-940. DUAN J H, SHI Y Y, LI X B, et al. Adaptive polishing for blisk by flexible grinding head[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):934-940(in Chinese).
[4] 张岳. 航发叶片七轴联动数控砂带磨削加工方法及自动编程关键技术研究[D]. 重庆:重庆大学, 2012:12-16. ZHANG Y. Machining method and key technology research on auto-programming of aircraft blade seven axis NC abrasive belt grinding[D]. Chongqing:Chongqing University, 2012:12-16(in Chinese).
[5] HUANG H, GONG Z M, CHEN X Q, et al. Robotic grinding and polishing for turbine-vane overhaul[J]. Journal of Materials Processing Technology, 2002, 127(2):140-145.
[6] SUN Y Q, GIBLIN D J, KAZEROUNIAN K. Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(1):204-210.
[7] QI J D, ZHANG D H, LI S, et al. Modeling of the working accuracy for robotic belt grinding system for turbine blades[J]. Advances in Mechanical Engineering, 2017, 9(6):1-12.
[8] SONG Y X, LIANG W, YANG Y. A method for grinding removal control of a robot belt grinding system[J]. Journal of Intelligent Manufacturing, 2012, 23(5):1903-1913.
[9] MASOOD S H, BAGAM V K, CHANTANABUBPHA P. A computerised minimum distance algorithm for machining of sculptured surfaces[J]. Computers & Industrial Engineering, 2002, 42(2-4):291-297.
[10] XU R F, CHEN Z T, CHEN W Y, et al. Dual drive curve tool path planning method for 5-axis NC machining of sculptured surfaces[J]. Chinese Journal of Aeronautics, 2010, 23(4):486-494.
[11] CATANIA G. A computer-aided prototype system for NC rough milling of free-form shaped mechanical part-pieces[J]. Computers in Industry, 1992, 20(3):275-293.
[12] HUANG Y, OLIVER J H. Non-constant parameter NC tool path generation on sculptured surfaces[J]. The International Journal of Advanced Manufacturing Technology, 1994, 9(5):281-290.
[13] 吴福忠. 点云曲面等残留高度刀具路径规划[J]. 计算机集成制造系统, 2012, 18(5):965-972. WU F Z. Constant scallop-height tool path planning for point cloud surface[J]. Computer Integrated Manufacturing Systems, 2012, 18(5):965-972(in Chinese).
[14] KIM B H, CHU C N. Effect of cutter mark on surface roughness and scallop height in sculptured surface machining[J]. Computer-Aided Design, 1994, 26(3):179-188.
[15] SURESH K, YANG D C H. Constant scallop-height machining of free-form surfaces[J]. Journal of Engineering for Industry, 1994, 116(2):253-259.
[16] 黄翔, 李迎光. 数控编程理论、技术与应用[M]. 北京:清华大学出版社, 2006:135-140. HUANG X, LI Y G. Theory, technology and application of NC programming[M]. Beijing:Tsinghua University Press, 2006:135-140(in Chinese).
[17] LEE Y S. Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining[J]. Computer-Aided Design, 1998, 30(7):559-570.
[18] 张海洋, 杨文玉, 张家军, 等. 叶片机器人砂带磨抛的轨迹规划研究[J]. 机电工程, 2014, 31(5):578-581, 586. ZHANG H Y, YANG W Y, ZHANG J J, et al. Trajectory planning for roboticbelt grinding of turbine blade[J]. Journal of Mechanical & Electrical Engineering, 2014, 31(5):578-581, 586(in Chinese).
[19] 郝炜, 蔺小军, 单晨伟, 等. 薄壁叶片前后缘加工误差补偿技术研究[J]. 机械科学与技术, 2011, 30(9):1446-1450. HAO W, LIN X J, SHAN C W, et al. Research on the machining error compensation for the leading and trailing edges of thin-walled blades[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(9):1446-1450(in Chinese).
[20] 张明德, 蔡汉水, 谢乐, 等. 航发叶片前后缘数控砂带磨削关键技术研究[J]. 机械科学与技术, 2018, 37(5):797-803. ZHANG M D, CAI H S, XIE L, et al. Research on key technology of CNC abrasive belt grinding for aircraft engines blade edges[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(5):797-803(in Chinese).
[21] 赵正彩. 钛合金空心风扇叶片前后缘自适应数控加工研究[D]. 南京:南京航空航天大学, 2017:12-15. ZHAO Z C. Research on adaptively numerical control machining of tailing and leading edges of titanium hollow fan blade[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:12-15(in Chinese).
[22] 蓝仁浩, 黄云, 陈贵林, 等. 航空发动机叶片精密自适应砂带磨削技术及试验研究[J]. 航空制造技术, 2018, 61(15):16-24. LAN R H, HUANG Y, CHEN G L, et al. Self-adaptive belt grinding technology and its experimental research on aero-engine blade[J]. Aeronautical Manufacturing Technology, 2018, 61(15):16-24(in Chinese).
[23] 张军锋, 史耀耀, 蔺小军, 等. 航空发动机叶片前后缘自由式砂带抛光技术[J]. 航空学报, 2017, 38(3):420327. ZHANG J F, SHI Y Y, LIN X J, et al. Freestyle belt polishing technology for leading and trailing edges of aeroengine blade[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):420327(in Chinese).
[24] 丁汉, 朱利民. 复杂曲面数字化制造的几何学理论和方法[M]. 北京:科学出版社, 2011:232-237. DING H, ZHU L M. Geometric theories and methods for digital manufacturing of complex surfaces[M]. Beijing:Science Press, 2011:232-237(in Chinese).
[25] BRACH R M. Formulation of rigid body impact problems using generalized coefficients[J]. International Journal of Engineering Science, 1998, 36(1):61-71.
[26] JENKINS H E, KURFESS T R, LUDWICK S J. Determination of a dynamic grinding model[J]. Journal of Dynamic Systems, Measurement, and Control, 1997, 119(2):289-293.