航空发动机燃烧室中,液体燃料的雾化过程、特别是初始雾化过程非常复杂,至今无法建立准确的初始雾化模型。忽略液体射流黏性,采用线性不稳定性分析法对无黏液体(工质为水)在二维剪切横向气流中的破碎机理进行研究。通过建立射流的色散方程,根据其表面波的增长率及波数的发展情况对射流破碎进行预测。当气体韦伯数或液体韦伯数增大时,射流表面波增长率显著增加,最佳波长明显减小。液气动量比大于临界值时,Kelvin-Helmholtz (K-H)不稳定性占主导作用;反之,Rayleigh-Taylor (R-T)不稳定性占主导作用。二维剪切气流在射流方向上具有速度梯度,只改变横向气动力对射流表面波的作用。气体韦伯数与液体韦伯数对射流破碎的作用与均匀气流相似;保持气流流量相同时,负梯度剪切气流可以加速射流的破碎。
The complicated atomization process of liquid fuels, in particular, the initial atomization process, in the aero-engine combustor hinders the establishment of accurate primary atomization models. We apply the linear instability analysis to the study on the breakup mechanism of inviscid liquid (water) without considering the jet viscosity. The jet breakup is predicted according to the growth rate of the surface wave and the unstable wave number range by establishing the dispersion equation. When the Weber number of the air or the liquid increases, the growth rate of the jet surface wave increases significantly, while the optimal wavelength decreases significantly. When the liquid to air momentum ratio is larger than the critical value, K-H instability is dominant; otherwise, R-T instability is dominant. The two-dimensional shear airflow has a velocity gradient in the jet direction, changing only the effect of transverse aerodynamic force on the jet surface wave. When the jet flow rate is constant, the negative gradient shear airflow can accelerate the jet breaking.
[1] PANDEY K M, MEMBER I, SIVASAKTHIVEL T. Recent advances in scramjet fuel injection-a review[J]. International Journal of Chemical Engineering and Applications, 2010, V1(4):294-301.
[2] ADELBERG M. Breakup rate and penetration of a liquid jet in a gas stream[J]. AIAA Journal, 1967, 5(8):1408-1415.
[3] INAMURA T. Trajectory of a liquid jet traversing subsonic airstreams[J]. Journal of Propulsion and Power, 2000, 16(1):155-157.
[4] CLARK M M. Drop breakup in a turbulent flow-L. Conceptual and modeling consi-derations[J]. Chemical Engineering Science, 1988, V43(3):671-679.
[5] MASHAYEK A, JAFARI A, ASHGRIZ N. Improved model for the penetration of liquid jets in subsonic crossflows[J]. AIAA Journal, 2008, V46(11):2674-2686.
[6] MASHAYEK A, ASHGRIZ N. Model for deformation of drops and liquid jets in gaseous crossflows[J]. AIAA Journal, 2009, 47(2):303-313.
[7] MASHAYEK A, BEHZAD M, ASHGRIZ M. Multiple injector model for primary breakup of a liquid jet in crossflow[J]. AIAA Journal, 2011, V46(11):2407-2420.
[8] RAYLEIGH L. On the instability of jets[J]. Proceedings of the London Mathematical Society, 1878, V10(1):4-13.
[9] YOON S S, HEISTER S D. Categorizing linear theories for atomizing round jets[J]. Atomization & Sprays, 2003, 13(5-6):499-516.
[10] STERLING A M, SLEICHER C A. The instability of capillary jets[J]. Journal of Fluid Mechanics, 1975, 68(3):477-495.
[11] REITZ R D, BRACCO F V. Mechanism of atomization of a liquid jet[J]. Physics of Fluids, 1998, 25(10):1730-1742.
[12] YANG H Q. Asymmetric instability of a liquid jet[J]. Physics of Fluids A Fluid Dynamics, 1992, 4(4):681-689.
[13] PANCHANGNULA M V, SOJKA P E, SANTANGELO P J. On the three-dimensional instability of a swirling, annular, inviscid liquid sheet subject to unequal gas velocities[J]. Physics of Fluids, 1996, 8(12):3300-3312.
[14] KARAGOZIAN A R. Transverse jets and their control[J]. Progress in Energy & Combustion Science, 2010, 36(5):531-553.
[15] SEDARSKY D, PACIARONI M, BERROCAL E, et al. Model validation image data for breakup of a liquid jet in crossflow:part I[J]. Experiments in Fluids, 2010, 49(2):391-408.
[16] 易世君. 粘性液体射流分裂雾化机理及喷雾特性研究[D]. 大连:大连理工大学, 1996:13-15 YI S J. Mechanism of atomization and spray characteristics of viscous jet[D].Dalian:Dalian University of Technology, 1996:13-15(in Chinese).
[17] SHEN J, LI X. Instability of an annular viscous liquid jet[J]. Acta Mechanica, 1996, 114(1):167-183.
[18] YOUNG D F, MUNSON B R, OKⅡSHI T H, et al. A brief introduction to fluid mechanics[M]. 5th. New York:John Wiley & Sons, 2010:73-96.
[19] WU P K, KIRKENDALL K A, FULLER R P, et al. Breakup processes of liquid jets in subsonic crossflows[J]. Journal of Propulsion & Power, 1997, 13(1):64-73.
[20] SALLAM K A, AALBURG C, FAETH G M. Breakup of round nonturbulent liquid jets in gaseous crossflow[J]. AIAA Journal, 2004, 42(12):2529-2540.
[21] MAZALLON J, DAI Z, FAETH G. Aerodynamic primary breakup at the surface of nonturbulent round liquid jets in crossflow[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1998:716.